

gDBClone

A Simple Approach to Managing Test and Development Environments
Leveraging ACFS Snapshots

O R A C L E W H I T E P A P E R | A U G U S T 2 0 1 7

1 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Table of Contents

Executive Overview 4

Database Provisioning Lifecycle and Challenges 4

Managing Test & Dev Environments Does Not Have to be Complex 5

Purpose of Database Duplication 6

Test and Dev environment 6

Database Clone vs Database Snapshot creation time 8

Supported Configurations and Features 8

gDBClone Clone 8

gDBClone Snap 10

gDBClone Convert 12

gDBClone ListDBs & DelDB 12

gDBClone ListHomes 12

gDBClone ListSnaps & DelSnap 12

gDBClone SYSPwF 12

gDBClone Command Syntax 13

gDBClone Installation 14

gDBClone deinstallation 14

Managing gDBClone Privileges and Security with SUDO 15

Allowing Root User Access Using SUDO 15

SUDO Example 1: Allow a User to Perform Any gDBClone Operation 15

SUDO Example 2: Allow a User to Perform Only Selected gDBClone Operations

 15

2 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

SUDO Example 3: Allow a User to Perform Any gDBClone Operation without

password request 15

Limitations & Considerations 16

Dependency 16

Source database using Transparent Data Encryption (TDE) 16

Database clone/snap overwriting SGA parameters 16

gDBClone usage example 17

1. Clone a Remote/Local database to ACFS(Gold/Image) 17

2. Clone a Remote/Local database to ASM and make it a RAC database 18

3. Clone a 12c Multitenant database to ACFS 18

4. Snapshot a gold/master database as RAC OneNode 19

5. Convert a database (SI or RAC OneNode) to RAC 19

6. Convert a non-CDB database to PDB of a given CDB 19

7. Delete database 19

8. List databases 20

9. Create an encrypted SYS password file 20

Case Studies 21

1. Managing a test & dev environment combined with Oracle Data Guard 21

2. Creating database clone using RMAN backupsets 27

3. Clone 11g Database from ASM to ACFS keeping the source running 29

4. Create a RAC snapshot database from a GOLD clone running database 30

5. Create a snapshot RAC database from a standby database 32

6. Clone a database from RMAN full backup to ACFS as standby Database 34

7. Database upgrade using Transient Logical Standby(TLS) 36

3 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

8. Clone a database encrypted with Transparent Data Encryption (TDE) 37

9. Using gDBClone in Oracle Public Cloud (RACDBaaS) 40

10. Using gDBClone on ODA X6-2 S,M,L (Enterprise Edition) 44

11. Migrate a database from OPC to BMC using gDBClone 49

12. Test & Dev Management environment example 55

Conclusion 57

Appendix – A 58

Clone Location 58

Snap Location 59

Standby option 60

4 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Executive Overview

As database-driven applications grow rapidly, maximizing agility, reducing management overhead and

cost savings are top priority for IT organizations today. Customers must have solutions to contain data

redundancy that is sprawling out of control. On the average, more than 10 full copies of a production

databases are created for test, development and reporting purposes.

In addition to redundant data, customers struggle with ever increasing management overhead required

for managing database life cycles. Frequent challenges are provisioning of databases and deployment

in test and development environments frequently, efficiently, quickly and cost effectively.

Oracle addresses management of test and development environments with advanced products and

technologies to realize:

» Simplicity

» Cost savings

» Reduction of management overhead

» Agility

Database Provisioning Lifecycle and Challenges

Managing database test and development (test & dev) environments can be challenging and costly in

time and resources. Production databases often require 8-10 or more copies for varies types of test

and development purposes. Each copy of a database consumes significant storage space. Database

copies are typically recycled (created, deleted or refreshed) often. Conventional ways of manually

managing test & dev environments can be complex, costly and time consuming. Test & dev life cycle

can be defined at a high level as follows:

Figure 1

5 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

An initial copy of a production database is created on a test & dev cluster as a master copy. Data

scrubbing may be required either on the production server or on the test cluster as well. Database or

data scrubbing could mean data filtering, redaction or any other technique the user chooses to use in

order to provide only the data set that is needed or authorizes for test and development purposes. A

database home should be identified or provisioned in preparation for deploying a test database.

Multiple copies of databases may be provisioned off the master copy on the test cluster. Database

administrators manage the environments and clean up when a database copy is no longer needed.

Managing Test & Dev Environments Does Not Have to be Complex

gDBClone is a tool that was developed to provide a simple and efficient method for cloning a database

for test and dev environments. gDBClone leverages Oracle Automatic Storage Management Cluster

File System (ACFS) snapshot functionality to create space efficient copies of databases and manage a

test and dev database life cycle. ACFS is a filesystem that's provided by Oracle on various OS

platforms and really integrates into Oracle ASM (Automatic Storage Management). It's a very powerful

Cluster Filesystem but it's not distributed as part of the Operating System, it's distributed with the

Oracle Grid Infrastructure. The key enabling technology was introduced in Oracle Database 12.1 that

allows creation of Oracle Database files directly on the ACFS file system (RDBMS 11.2.0.4 and up)

and therefore benefiting from ACFS point in time snapshot functionality for sparse database

provisioning efficiently.

gDBClone performs seven key functions:

» Clone: Creates a clone database (as Primary or as Standby) from a production database copying

the DB to the target test and dev cluster

» Snap: Creates sparse snapshots of the DB to be used for test and development

» Convert: Converts a given database to RAC (Real Application Cluster) OneNode, RAC or from non-

CDB (non-container database) to a PDB (pluggable database) of a given CDB

» ListDBs: Lists the cloned databases and its snapshots

» DelDB: Deletes cloned databases and/or its snapshots

» ListHomes: Lists the available oracle home

» SYSPwF: Creates an encrypted password file

6 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Purpose of Database Duplication

A duplicate database is useful for a variety of purposes, most of which involve testing & upgrade. You

can perform the following tasks in a duplicate database:

» Test backup and recovery procedures

» Test an upgrade to a new release of Oracle Database

» Test the effect of applications on database performance

» Create a standby database (Dataguard)

» Leverage on Transient Logical Standby (TLS) to perform an upgrade

» Generate reports

For example, you can duplicate the production database on host1 to host2, and then use the duplicate

database on host2 to practice restoring and recovering this database while the production database on

host1 operates as usual.

Test and Dev environment

The following diagram illustrates a typical test and dev environment that can be created and managed

with the gDBClone command.

Figure 2 – Test & Dev environment

In this example, a copy of a production database is cloned into the test & dev cluster with a single

gDBClone command (“gDBClone clone”). The source database may be on an Exadata Database

Machine or any other legacy server and any type of file system including Oracle ASM.

7 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

gDBClone is utilized to provision sparse space efficient copies of databases (“gDBClone snap”).

These copies may be deployed for test and dev purposes. Only small incremental storage is required

by the snapshots after the initial creation of the master copy as illustrated by the storage capacity

illustration on the right of figure 2 above.

An Oracle ACFS snapshot is an online, read only or read write, point in time copy of an Oracle ACFS file system.

The snapshot copy is space efficient and uses Redirect-on-Write (ACFS ROW) functionality. Before an Oracle

ACFS file extent is modified or deleted, its current value is preserved in the snapshot to maintain the point in time

view of the file system. Oracle ACFS supports 1023 snapshots per file system

8 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Database Clone vs Database Snapshot creation time

The database clone creation time depends on the database size and on the network throughput. In

case of database snapshot the cloning operation is a very fast operation as it’s independent on the

database size and/or network speed. In the following example, we compare a clone/snap of 5Gb vs

25Gb database size:

- Database Clone

- Database Snap

Supported Configurations and Features

gDBClone Clone

Creates a clone database (as Primary or as Physical Standby) from a production database duplicating

(physical copy) the DB to the Test & Dev cluster using “RMAN Duplicate from Active Database” (by

default gDBClone is allocating 3 RMAN channels, you may overwrite it using “-channels <RMAN

channels number>” command option). The source database may be on an Exadata Database Machine

or any other legacy server and any type of file system including Oracle ASM. gDBClone needs to

connect the remote database normally through the SCAN (Single Client Access Network) listener.

5Gb Database Clone Creation Time:

 real 6m17.758s

 user 0m12.904s

 sys 0m1.028s

25Gb Database Clone Creation Time:

 real 38m35.636s

 user 0m13.192s

 sys 0m1.001s

5Gb Database Clone Creation Time:

 real 2m23.723s

 user 0m7.671s

 sys 0m0.974s

25Gb Database Clone Creation Time:

 real 2m15.842s

 user 0m7.667s

 sys 0m1.001s

6,17

38,25

47,23

59,23

2,23 2,15 2,2 2,430

10

20

30

40

50

60

70

5 Gb 25 Gb 35 Gb 45 Gb

Clone Creation Time and Database Size

Clone Snap

9 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

It’s also possible clone a production database from a given RMAN full backup location (the full backup

can be on NFS). The source database can be SI (Single Instance), RAC OneNode or RAC. The target

clone database can be SI (Single Instance), RAC OneNode or RAC (by default it will be SI). The 12c

Multitenant container databases are supported.

The gDBClone “clone” option can be used to instantiate a Dataguard environment and the standby can

be and “Active Standby” or a “Real Time Apply”. The “gDBClone clone” is done without special impact

on the source production database.

On cloning a remote or local database 3 different ACFS mount points are possible:

 -dataacfs <acfs mount point>  Database datafiles target ACFS storage

 -redoacfs <acfs mount point>  Database redologs target ACFS storage (default dataacfs)

 -recoacfs <acfs mount point>  Database recovery target ACFS storage (default dataacfs)

gDBClone can be used to clone a database to ASM, in such case, 3 different disk group are possible:

 -datadg <ASM diskgroup>  Database datafiles target ASM disk group (default +DATA)

 -redodg <ASM diskgroup>  Database redologs target ASM disk group (default +REDO)

 -recodg <ASM diskgroup>  Database recovery target ASM disk group (default +RECO)

Note: cloning a database to ASM you cannot leverage later on the database gDBClone snapshot feature

Figure 3 - gDBClone clone capabilities

10 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

gDBClone Snap

Creates sparse snapshots of the DB to be used for test and development. The source database must

be stored on local Oracle ACFS filesystem.

The source database can be SI (Single Instance), RAC OneNode or RAC, primary or standby. The

target snapshot database can be SI (Single Instance), RAC OneNode or RAC (by default it will be SI),

primary or standby. The gDBClone is introducing the “Hot Database Snapshot as Standby”

capability. Without impact over the source database and "without" storage duplication, leveraging on

ACFS snapshot redirect-on-write (ACFS ROW) feature, gDBClone is making a snapshot of a running

database and if "-standby" option is used the result will be a standby database.

Note: the possibility to get a physical standby from a running database without downtime is the key to make

database upgrade leveraging on TLS (Transient Logical Standby)

Figure 4 - gDBClone snap capabilities

11 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

The gDBClone supports the snapshot of a running Standby database without production impact

leveraging on the “Snapshot Standby” database feature.

Figure 5 - Snapshot as Standby Database & Snapshot of Standby Database support

gDBClone is also supporting “Multi ACFS database file locations” and “database snapshot for different

ORACLE_HOMEs

Figure 6 - Multi ACFSs Database Locations Hot Snapshot Capability Support

12 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

gDBClone Convert

Beside “clone” and “snap” features, gDBClone can be used to convert a database to a RAC or RAC

OneNode database and it can be used to convert a 12c non-container database(non-CDB) to a

Pluggable database (PDB) of a given CDB.

gDBClone ListDBs & DelDB

gDBClone also provides single command to verify your database environments, providing parent/child

relation in case of snap-of-snap database, and delete databases that are no longer in use.

gDBClone ListHomes

With “listhomes” command option you can check which available ORACLE_HOMEs are available. The

oracle home name will be used later to “attach” the clone/snap database (“-tdbhome”).

gDBClone ListSnaps & DelSnap

You could use gDBClone to list and remove ACFS snapshot

gDBClone SYSPwF

Using “gDBClone syspwf” an encrypted password file will be created. Such password is the SYS

source remote database password. Doing a clone/snap with “-syspwf <sys password file>”

option, gDBClone will use the encrypted password, otherwise it will request at command line. If a file

with the name: “SYSpasswd_file” is present under gDBClone home (“/opt/gDBClone”), at

clone/snap time, gDBClone will check for the password from that file, in such case you can avoid the

“-syspwf” option and no password request are done at command line.

13 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

gDBClone Command Syntax

 gDBClone clone -sdbname <source DB name>

 -sdbscan <source DB Host SCAN name> | -sbckloc '<backup location path>'

 -tdbname <Target Database Name> -tdbhome <Target Database Home Name>

 { -dataacfs <acfs mount point> [-redoacfs <acfs mount point>][-recoacfs <acfs mount point>]} |

 { -datadg <asm data diskgroup> [-redodg <asm redo diskgroup>][-recodg <asm reco diskgroup>]}

 [-sga_max_size <size Mb>] [-sga_target <size Mb>] | [-pfile]

 [-channels <RMAN channels number>]

 [-sdbport <Source DB SCAN Listener Port>] [-tdbport <Target DB SCAN Listener Port>]

 [-standby [-pmode maxperf|maxavail|maxprot] [-activedg] [-rtapply]]

 [-racmod <db type>]

 [-opc]

 [-syspwf <sys password file>]

 gDBClone snap -sdbname <source DB name> -tdbname <Target Database Name>

 [-tdbhome <Target Database Home Name>]

 [-sga_max_size <size Mb>] [-sga_target <size Mb>] | [-pfile]

 [-standby [-pmode maxperf|maxavail|maxprot] [-activedg] [-rtapply]]

 [-sdbport <SCAN Listener Port>]

 [-racmod <db type>]

 gDBClone convert -sdbname <source noCDB name>

 -racmod <1|2> | -tdbname <target CDB name> [-check] {[-copy] [-path <path>]}

 [-syspwf <sys password file>] [-tsyspwf <sys password file>]

 gDBClone listhomes [-verbose]

 gDBClone listdbs [-tree] | [-verbose]

 gDBClone deldb -tdbname <database name> [-force]

 gDBClone listsnaps -dataacfs <acfs_mount_point> [-tree]

 gDBClone delsnap -snapname <snapshot name> -dataacfs <acfs_mount_point>

 gDBClone syspwf -syspwf <SYS encrypted password file path>

 gDBClone OPTIONS

 -sdbname Source Database Name

 -sdbscan Source DB Host SCAN Name

 -sdbport Source SCAN Listener Port (default 1521)

 -sbckloc Source RMAN Full Backup Location

 -tdbname Target Database Name

 -tdbhome Target Database Home Name

 -tdbport Target SCAN Listener Port (default 1521)

 -standby The clone/snap will be a physical standby database

 -pmode Standby option: maxperf/maxavail/maxprot (default maxperf)

 -activedg Enable Active Dataguard

 -rtapply Enable real time apply

 -racmod 0/1/2 == SINGLE/RACONE/RAC (default 0)

 -dataacfs Database datafiles target ACFS storage

 -redoacfs Database redologs target ACFS storage (default dataacfs)

 -recoacfs Database recovery target ACFS storage (default dataacfs)

 -datadg Database datafiles target ASM diskgroup (default +DATA)

 -redodg Database redologs target ASM diskgroup (default +REDO)

 -recodg Database recovery target ASM diskgroup (default +RECO)

 -sga_max_size SGA Max Size (Mb)

 -sga_target SGA Target (Mb)

 -pfile Parameters file

 -channels RMAN allocate channels (default 3)

 -opc Required option on RACDBaaS environment

 -syspwf SYS encrypted password file

 -tsyspwf SYS encrypted password file

 -check Will perform a CDB to PDB conversion pre-check

 -copy Will copy the source noCDB datafiles to CDB location (default: nocopy)

 -path Path where to copy the dbfiles (default CDB system dbf path)

 -tree With listdb will show the Parent/Snapshot tree

 -verbose Display OH & version on listdb

 -force With deldb will unregister the db

14 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

gDBClone Installation

gDBClone can be installed using the RPM (RedHat Package Manager) command as following:

(*) X=version number

or updating an installed version, issuing:

(*) X=version number

Following files are created under ‘/opt/gDBClone’:

gDBClone deinstallation

gDBClone can be removed using the RPM (RedHat Package Manager) command as following:

(*) X=version number

rpm -i gDBClone-3.0.2-X.noarch.rpm

tree /opt/gDBClone

/opt/gDBClone

├── gDBClone

└── lib

 ├── gDBClone_AcfsUtils.pm

 ├── gDBClone_Clone.pm

 ├── gDBClone_DBConvert.pm

 ├── gDBClone_GetDBConnection.pm

 ├── gDBClone_Inventory.pm

 ├── gDBClone_LoggingAndTracing.pm

 ├── gDBClone_passwd.jar

 ├── gDBClone_Queries.pm

 ├── gDBClone_Snap.pm

 ├── gDBClone_SqlUtils.pm

 └── gDBClone_Utils.pm

1 directory, 12 files

rpm -e gDBClone-3.0.2-X.noarch

rpm -Uvh gDBClone-3.0.2-X.noarch.rpm

15 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Managing gDBClone Privileges and Security with SUDO

gDBClone command-line utility requires root system privileges for most actions. You may want to use

SUDO as part of your system auditing and security policy.

For most tasks, you need to log in as root to use the gDBClone command-line interface. If you are not

logged in as root, then you cannot carry out most actions such clone, snap.

Allowing Root User Access Using SUDO

In environments where system administration is handled by a different group than database

administration, or where security is a significant concern, you may want to limit access to the root user

account and password. SUDO enables system administrators to grant certain users (or groups of users)

the ability to run commands as root, while logging all commands and arguments as part of your security

and compliance protocol.

A SUDO security policy is configured by using the file /etc/sudoers. Within the sudoers file, you can

configure groups of users and sets of commands to simplify and audit server administration with SUDO

commands.

Caution: Configuring SUDO to allow a user to perform any operation is equivalent to giving that user root privileges.

Consider carefully if this is appropriate for your security needs.

SUDO Example 1: Allow a User to Perform Any gDBClone Operation

This example shows how to configure SUDO to enable a user to perform any gDBClone operation. You

do this by adding lines to the commands section in the /etc/sudoers file:

In this example, the user name is rcitton. The file parameter setting ALL=GDBCLONE_CMDS grants the

user rcitton permission to run all gDBClone commands that are defined by the command alias

GDBCLONE_CMDS.

SUDO Example 2: Allow a User to Perform Only Selected gDBClone Operations

To configure SUDO to allow an user to perform only selected gDBClone operations, add lines to the

commands section in the /etc/sudoers file as follows:

SUDO Example 3: Allow a User to Perform Any gDBClone Operation without password request

To configure SUDO to allow an user to perform gDBClone operations without password request, add

lines to the commands section in the /etc/sudoers file as follows:

Cmnd_Alias GDBCLONE_CMD=/opt/gDBClone/gDBClone *

rcitton ALL = GDBCLONE_CMD

Cmnd_Alias GDBCLONE_CMD=/opt/gDBClone/gDBClone clone

rcitton ALL = GDBCLONE_CMD

Cmnd_Alias GDBCLONE_CMD=/opt/gDBClone/gDBClone *

rcitton ALL=(root) NOPASSWD:GDBCLONE_CMD

16 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Limitations & Considerations

gDBClone works on a Grid Infrastructure environment only. Source database must be in archivelog mode

when cloning/snapshotting as it’s executed a hot clone/snapshot. Multitenant database snapshot is not

currently supported.

“gDBClone snap” needs EE (Enterprise Edition) Databases as the RMAN snapshot time recovery

feature is needed and Grid Infrastructure version 12.1 or above. GI version 11g is not supported due to

missing ACFS snapshot-of-snapshot feature capability.

Dependency

gDBClone may request “perl” and “perl-XML-Simple” package installation

Source database using Transparent Data Encryption (TDE)

Transparent Data Encryption (TDE), which functions at the column level, and tablespace encryption. If

you are cloning a database with encrypted tablespaces, you must manually copy the keystore to the

duplicate database. If the keystore is not an auto login (SSO) keystore, then you must convert it to an auto

login keystore at the duplicate database. (See also case study at page 37)

Database clone/snap overwriting SGA parameters

gDBClone is supporting the possibility to clone/snap a source database “overwriting” some SGA

parameters. You can leverage on this feature using the “-pfile <parameters file>” command option. The

supported parameters are the following:

It’s possible “overwrite” just only sga_max_size & sga_target, using “-sga_max_size <size Mb>” & “-
sga_target <size Mb>” gDBClone command option.

yum install -y perl perl-XML-Simple

aq_tm_processes

archive_lag_target

bitmap_merge_area_size

create_bitmap_area_size

db_block_checking

db_block_checksum

db_file_multiblock_read_count

db_files

db_lost_write_protect

fast_start_parallel_rollback

hash_area_size

job_queue_processes

log_archive_format

log_archive_max_processes

log_archive_trace

open_cursors

parallel_execution_message_size

parallel_max_servers

pga_aggregate_target

processes

recovery_parallelism

remote_login_passwordfile

sec_case_sensitive_logon

session_cached_cursors

sessions

sga_max_size

sga_target

shared_pool_reserved_size

shared_pool_size

shared_servers

sort_area_retained_size

sort_area_size

undo_management

undo_retention

17 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

gDBClone usage example

1. Clone a Remote/Local database to ACFS(Gold/Image)

gDBclone clone command options:

You could use “-redoacfs” and/or “-recoacfs” to store redologs/archivelogs in different ACFS

filesystems.

$ sudo /opt/gDBClone/gDBClone clone -sdbname ORCL \

 -sdbscan exadata316-scan \

 -tdbname GOLD \

 -tdbhome OraDb12102_home1 \

 -dataacfs /u02/app/oracle/oradata/datastore

 [-redoacfs <acfs mount point>][-recoacfs <acfs mount point>]

Figure 7 - Clone a remote/local Database to ACFS

Note: If you need to decrease/increase the SGA footprint, example if your target local system cannot

accommodate the source SGA, you can leverage on “-sga_max_size” and “-sga_target” gDBClone

clone parameters (both expressed in Mb), or using the more comprehensive “-pfile” option.

18 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

2. Clone a Remote/Local database to ASM and make it a RAC database

gDBclone clone command options:

Local default ASM diskgroup:+DATA, +REDO, +RECO
Local ASM diskgroup override: -datadg <dgname>, -redo <dgname>, -recodg <dgname>

3. Clone a 12c Multitenant database to ACFS

gDBClone clone command options:

Note: no extra options are needed, automatic CDB recognition

$ sudo /opt/gDBClone/gDBClone clone -sdbname ORCL \

 -sdbscan exadata316-scan \

 -tdbname GOLD \

 -tdbhome OraDb12102_home1 \

 -datadg +MYDATA

 [-redodg <dgname>][-recodg <dgname>]

gDBClone clone -sdbname ORCL \

 -sdbscan exadata316-scan \

 -tdbname GOLD \

 -tdbhome OraDb12102_home1 \

 -dataacfs /u02/app/oracle/oradata/datastore

 [-standby [-pmode maxperf|maxavail|maxprot] [-activedg] [-rtapply]]

 [-racmod <db type>]

Figure 8 – Clone a remote/local database to ASM

Figura 9 – Clone a 12c multitenant database to ACFS

19 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

4. Snapshot a gold/master database as RAC OneNode

Note: in this case as the “-tdbhome” option is not provided, the ORACLE_HOME will be the

same source database’s ORACLE_HOME.

5. Convert a database (SI or RAC OneNode) to RAC

Note: “-racmod” 0/1/2 = SINGLE/RACONE/RAC (default 0). Convert RAC OneNode,

RAC to single instance is not supported.

6. Convert a non-CDB database to PDB of a given CDB

-check Will perform a CDB to PDB conversion pre-check
-copy Will copy the source noCDB datafiles to CDB location (default: nocopy)
-path Path where to copy the dbfiles (default CDB system dbf path)

Note: before the conversion you may want execute “gDBClone convert -check” to verify the
conversion result in “dry mode”. Using “-check” a report with warnings and potential conversion
errors is generated for your review.

7. Delete database

 Note: without “-force” option, dbca will be used to delete the database

gDBClone convert -sdbname <source noCDB name>

 -tdbname <target CDB name>

 [-check] {[-copy] [-path <path>]}

gDBClone convert -sdbname SNAP \

 -racmod 2

gDBClone snap -sdbname GOLD \

 -tdbname SNAP \

 -racmod 1

gDBClone deldb -tdbname SNAP -force

INFO: 2016-12-15 01:29:56: Please check the logfile

'/opt/gDBClone/out/log/gDBClone_91617.log' for more details

You are going to drop the database SNAP, are you sure (Y/N)? y

WARNING: 2016-12-15 01:29:58: ORACLE_BASE is not set

INFO: 2016-12-15 01:29:58: Got Oracle Base from orabase

SUCCESS: 2016-12-15 01:30:23: ACFS snapshot 'SNAP' on

'/u02/app/oracle/oradata/datastore' has been deleted.

Note: If you need to decrease/increase the SGA footprint, example if your target local system cannot

accommodate the source SGA, you can leverage on “-sga_max_size” and “-sga_target” gDBClone

snap parameters (both expressed in Mb), or using the more comprehensive “-pfile” option.

20 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

8. List databases

Having the following scenario, “gDBClone listdb” will list relations and database type

Figure 10 – gDBClone ListDB scenario

9. Create an encrypted SYS password file

Example:

gDBClone syspwf -syspwf /opt/gDBClone/SYSpasswd_file

gDBClone syspwf -syspwf /opt/gDBClone/SYSpasswd_file

Please enter the SYS User password : ## Enter the remote SYS password

Please re-enter the SYS user password : ## re-Enter the remote SYS password

SYS password file created as /opt/gDBClone/SYSpasswd_file

cat /opt/gDBClone/SYSpasswd_file

701579ABE9D7E2C64A03332B12309E97

21 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Case Studies

The gDBClone script provides flexible options and configurations to best fulfill the customer’s

requirements.

1. Managing a test & dev environment combined with Oracle Data Guard

Many customers deploy Oracle Data Guard as their disaster recovery solution. When you create the

standby database on an ACFS file system, you will have simple options to create and manage a test & dev

environment on the standby cluster. This makes better utilization of the standby resources while enabling

a test and dev environment. The following diagram illustrates a test and dev environment that can easily

be managed using the gDBClone commands:

Using the ‘gDBClone snap’ function, you can either create multiple snapshots and provision for different

purposes, or create a snapshot to preserve the point in time copy and create snaps of snaps to deploy

identical copies of databases for test & dev as you can see from the diagram above. The advantage of this

approach is that the master copy of the database (standby) is continuously refreshed by Data Guard

allowing disaster recovery as well as refreshed data for testing.

Figure 11 – Managing a test & dev environment combined with Oracle Data Guard

22 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Such scenario can be setup using gDBClone within few commands:

1) On target list the available Oracle Homes:

2) Create an encrypted SYS (source database) password file (optional):

Note: if you skip the syspwf file creation, the SYS source database password will be requested at

command line

3) Clone the source database (ORCL) on target as Standby database (CLONE):

Output:

$ sudo /opt/gDBClone/gDBClone listhomes

Oracle Home Name Home Location

---------------- ------------

OraDb11204_home1 /u01/app/oracle/product/11.2.0.4/dbhome_1

OraDb12102_home1 /u01/app/oracle/product/12.1.0.2/dbhome_1

$ sudo /opt/gDBClone/gDBClone syspwf -syspwf /opt/gDBClone/SYSpasswd_file

Please enter the SYS User password : ## Enter the SYS source database password

Please re-enter the SYS user password : ##re-enter the SYS source DB password file

SYS password file created as /opt/gDBClone/SYSpasswd_file

$ sudo /opt/gDBClone/gDBClone clone -sdbname ORCL \

 -sdbscan exadata316-scan \

 -tdbname CLONE \

 -tdbhome OraDb12102_home1 \

 -dataacfs /u02/app/oracle/oradata/datastore \

 -syspwf /opt/gDBClone/SYSpasswd_file \

 -standby

INFO: 2016-12-13 03:31:22: Please check the logfile '/opt/gDBClone/out/log/gDBClone_60775.log' for more

details

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-13 03:31:22: Validating environment

INFO: 2016-12-13 03:31:22: Checking superuser usage

INFO: 2016-12-13 03:31:22: Checking ping to host 'exadata316-scan'

INFO: 2016-12-13 03:31:22: Checking if target database name 'CLONE' is a valid name

INFO: 2016-12-13 03:31:22: Checking if target database home 'OraDb12102_home1' exists

INFO: 2016-12-13 03:31:23: Got Oracle Base from env variable: /u01/app/oracle

INFO: 2016-12-13 03:31:23: Checking if target database 'CLONE' exists

INFO: 2016-12-13 03:31:23: Checking 'CLONE' snapshot existence on '/u02/app/oracle/oradata/datastore'

INFO: 2016-12-13 03:31:23: Checking registered instance 'CLONE'

INFO: 2016-12-13 03:31:25: Checking listener on 'oda458:1521'

INFO: 2016-12-13 03:31:25: Checking source and target database version

INFO: 2016-12-13 03:31:28: Checking source log mode

INFO: 2016-12-13 03:31:29: Checking FLASHBACK mode

WARNING: 2016-12-13 03:31:29: Source database 'ORCL' is not in FLASHBACK mode

INFO: 2016-12-13 03:31:29: Checking LOG_ARCHIVE_DEST settings

INFO: 2016-12-13 03:31:30: Checking Flash Cache setting

INFO: 2016-12-13 03:31:30: Checking ACFS command options

INFO: 2016-12-13 03:31:30: Checking if '/u02/app/oracle/oradata/datastore' is an ACFS file system

SUCCESS: 2016-12-13 03:31:30: Environment validation complete

23 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

continue…

4) Check the target database (CLONE) creation:

5) Create a snapshot database SDB1 from the source standby CLONE database:

Note1: in order to get a snapshot database from a source standby database, the Flashback is

mandatory, if needed, on source CLONE standby database execute:

Note2: without “-tdbhome <Target Database Home Name>” parameter, the database home will

be the same source database oracle home, in this example “OraDb12102_home1”

MacroStep2 - Setting up clone environment...

INFO: 2016-12-13 03:31:30: Creating local pfile

INFO: 2016-12-13 03:31:31: Creating local password file

INFO: 2016-12-13 03:31:31: Creating local Audit folder

INFO: 2016-12-13 03:31:31: Creating local auxiliary listener

INFO: 2016-12-13 03:31:31: Starting auxiliary listener

INFO: 2016-12-13 03:31:34: Sleeping 60 secs, please wait

INFO: 2016-12-13 03:32:34: Setting up ACFS storage

INFO: 2016-12-13 03:32:34: Creating dynamic scripts

INFO: 2016-12-13 03:32:37: Cloning to target ACFS from host 'exadata316-scan' as standby database

INFO: 2016-12-13 03:32:37: Creating RMAN script for spfile target to ACFS

INFO: 2016-12-13 03:32:37: Instantiating standby database

INFO: 2016-12-13 03:32:37: Enabling force logging

INFO: 2016-12-13 03:32:37: Getting standby logs on source database ORCL

INFO: 2016-12-13 03:32:38: Getting MAX redologs group on source database ORCL

INFO: 2016-12-13 03:32:38: Getting THREAD# and redolog size on source database ORCL

INFO: 2016-12-13 03:32:39: Creating standby logs on source database ORCL

SUCCESS: 2016-12-13 03:32:54: Environment setup complete

MacroStep3 - Cloning database 'ORCL'...

INFO: 2016-12-13 03:32:54: please wait (this can take a while depending on database size and/or network

speed)

INFO: 2016-12-13 03:38:14: Moving spfile

INFO: 2016-12-13 03:38:37: Updating local dbs pfile/spfile

INFO: 2016-12-13 03:38:37: Register 'CLONE' database as cluster resource

INFO: 2016-12-13 03:38:39: Modifying DB instance

INFO: 2016-12-13 03:38:40: Setup ACFS dependency

INFO: 2016-12-13 03:38:42: Database 'CLONE' dependency to '/u02/app/oracle/oradata/datastore' done

successfully

MacroStep5 - Standby setup...

INFO: 2016-12-13 03:39:00: Starting redo apply

INFO: 2016-12-13 03:39:06: Configuring primary database 'ORCL'

SUCCESS: 2016-12-13 03:39:07: Successfully created clone "CLONE" database as standby

INFO: 2016-12-13 03:39:07: Cleaning up the setup

$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

CLONE SINGLE PHYSICAL_STANDBY Master /u02/app/oracle/oradata/datastore/.ACFS/snaps/

$ sudo /opt/gDBClone/gDBClone snap -sdbname CLONE \

 -tdbname SDB1 \

 -syspwf /opt/gDBClone/SYSpasswd_file

alter database recover managed standby database cancel;

alter database flashback on;

alter database recover managed standby database using current logfile disconnect;

24 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Output:

6) Check the target database (SDB1) creation:

INFO: 2016-12-13 23:21:57: Please check the logfile '/opt/gDBClone/out/log/gDBClone_59587.log' for more

details

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-13 23:21:57: Validating environment...

INFO: 2016-12-13 23:21:57: Superuser usage check

INFO: 2016-12-13 23:21:57: Database 'CLONE' existence check

INFO: 2016-12-13 23:21:57: Database 'CLONE' running check

WARNING: 2016-12-13 23:22:00: ORACLE_BASE is not set

INFO: 2016-12-13 23:22:00: Got Oracle Base from adrci: /u01/app/oracle

INFO: 2016-12-13 23:22:00: Checking if target database name SDB1 is a valid name

INFO: 2016-12-13 23:22:00: Checking database 'CLONE' connectivity

INFO: 2016-12-13 23:22:13: Checking whether the database 'CLONE' is in ACFS snapshot

INFO: 2016-12-13 23:22:13: Checking source database 'CLONE' and target dbhome version

INFO: 2016-12-13 23:22:17: Checking if target database 'SDB1' exists

INFO: 2016-12-13 23:22:17: Checking registered instance 'SDB1'

INFO: 2016-12-13 23:22:24: Checking if SDB1 exists as snapshot in '/u02/app/oracle/oradata/datastore'

INFO: 2016-12-13 23:22:24: Checking if source database CLONE is snapable

INFO: 2016-12-13 23:22:30: ...Checking whether the database 'CLONE' is entirely on ACFS

INFO: 2016-12-13 23:22:36: ...Checking whether the database 'CLONE' is a primary/physical standby

database.

INFO: 2016-12-13 23:22:40: ...Checking whether the Physical Standby database 'CLONE' is in MOUNT mode

INFO: 2016-12-13 23:22:46: ...Checking flashback on database 'CLONE'

INFO: 2016-12-13 23:22:52: ...Checking whether the database 'CLONE' is a CDB

INFO: 2016-12-13 23:23:06: ...Checking whether the database 'CLONE' is running in archivelog mode

INFO: 2016-12-13 23:23:12: ...Checking if all the datafiles are available

SUCCESS: 2016-12-13 23:23:18: Environment validation complete

MacroStep2 - Getting database snapshot...

INFO: 2016-12-13 23:23:18: Cloning source database 'CLONE' using ACFS snapshot

INFO: 2016-12-13 23:23:43: Entering into SNAP database creation phase 1

INFO: 2016-12-13 23:23:51: Stopping redo apply for standby database 'CLONE'

INFO: 2016-12-13 23:23:58: Converting physical standby 'CLONE' to snapshot standby

INFO: 2016-12-13 23:24:23: ...Getting the snapshot of Database 'CLONE' at this time

INFO: 2016-12-13 23:24:23: ...Successfully took the snapshot 'SDB1' of database 'CLONE' on

'/u02/app/oracle/oradata/datastore'

INFO: 2016-12-13 23:25:08: ...Converting physical standby 'CLONE' to snapshot standby

INFO: 2016-12-13 23:25:51: ...Starting redo apply for standby database 'CLONE'

INFO: 2016-12-13 23:26:03: ...Setting up storage for SNAP Database 'SDB1'

INFO: 2016-12-13 23:26:04: Entering into SNAP database creation phase 2

INFO: 2016-12-13 23:26:04: ...Creating controlfile for database 'SDB1'

INFO: 2016-12-13 23:26:54: ...Opening the database 'SDB1' with resetlogs

INFO: 2016-12-13 23:27:07: ...Setting the temporary tablespace for database 'SDB1'

INFO: 2016-12-13 23:27:34: ...Changing the Database ID

INFO: 2016-12-13 23:28:30: ...Creating spfile for SDB1

INFO: 2016-12-13 23:28:31: ...Creating password file for SDB1

INFO: 2016-12-13 23:28:31: Entering into SNAP database creation phase 3

INFO: 2016-12-13 23:28:54: ...Successfully started the database

INFO: 2016-12-13 23:29:02: ...Setting RMAN SNAPSHOT control file

INFO: 2016-12-13 23:29:38: Enabling flashback for database 'SDB1'

SUCCESS: 2016-12-13 23:29:53: Successfully created the database 'SDB1' from 'CLONE'

INFO: 2016-12-13 23:29:56: Cleaning up the setup

$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

CLONE SINGLE PHYSICAL_STANDBY Master /u02/app/oracle/oradata/datastore/.ACFS/snaps/

SDB1 SINGLE PRIMARY Snapshot CLONE

25 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Note: you could verify the parent relationship also doing:

7) Create a snapshot database SDB2 as RAC(Real Application Cluster) from the source standby

CLONE database:

Output:

$ sudo /opt/gDBClone/gDBClone listdbs -tree

Parent Child

------ -----

CLONE

 SDB1

--

Note: a branch tree will be displayed only if the parent exists!

--

$ sudo /opt/gDBClone/gDBClone snap -sdbname CLONE \

 -tdbname SDB1 \

 -syspwf /opt/gDBClone/SYSpasswd_file \

 -racmod 2

INFO: 2016-12-13 23:35:18: Please check the logfile '/opt/gDBClone/out/log/gDBClone_82301.log' for more

details

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-13 23:35:18: Validating environment...

INFO: 2016-12-13 23:35:18: Superuser usage check

INFO: 2016-12-13 23:35:18: Database 'CLONE' existence check

INFO: 2016-12-13 23:35:18: Database 'CLONE' running check

WARNING: 2016-12-13 23:35:21: ORACLE_BASE is not set

INFO: 2016-12-13 23:35:21: Got Oracle Base from adrci: /u01/app/oracle

INFO: 2016-12-13 23:35:21: Checking if target database name SDB2 is a valid name

INFO: 2016-12-13 23:35:21: Checking database 'CLONE' connectivity

INFO: 2016-12-13 23:35:33: Checking whether the database 'CLONE' is in ACFS snapshot

INFO: 2016-12-13 23:35:33: Checking source database 'CLONE' and target dbhome version

INFO: 2016-12-13 23:35:38: Checking if target database 'SDB2' exists

INFO: 2016-12-13 23:35:38: Checking registered instance 'SDB2'

INFO: 2016-12-13 23:35:47: Checking if SDB2 exists as snapshot in '/u02/app/oracle/oradata/datastore'

INFO: 2016-12-13 23:35:47: Checking if source database CLONE is snapable

INFO: 2016-12-13 23:35:54: ...Checking whether the database 'CLONE' is entirely on ACFS

INFO: 2016-12-13 23:36:00: ...Checking whether the database 'CLONE' is a primary/physical standby

database.

INFO: 2016-12-13 23:36:04: ...Checking whether the Physical Standby database 'CLONE' is in MOUNT mode

INFO: 2016-12-13 23:36:10: ...Checking flashback on database 'CLONE'

INFO: 2016-12-13 23:36:16: ...Checking whether the database 'CLONE' is a CDB

INFO: 2016-12-13 23:36:29: ...Checking whether the database 'CLONE' is running in archivelog mode

INFO: 2016-12-13 23:36:35: ...Checking if all the datafiles are available

SUCCESS: 2016-12-13 23:36:41: Environment validation complete

MacroStep2 - Getting database snapshot...

INFO: 2016-12-13 23:36:41: Cloning source database 'CLONE' using ACFS snapshot

INFO: 2016-12-13 23:37:06: Entering into SNAP database creation phase 1

INFO: 2016-12-13 23:37:13: Stopping redo apply for standby database 'CLONE'

INFO: 2016-12-13 23:37:22: Converting physical standby 'CLONE' to snapshot standby

INFO: 2016-12-13 23:37:47: ...Getting the snapshot of Database 'CLONE' at this time

INFO: 2016-12-13 23:37:47: ...Successfully took the snapshot 'SDB2' of database 'CLONE' on

'/u02/app/oracle/oradata/datastore'

INFO: 2016-12-13 23:38:32: ...Converting physical standby 'CLONE' to snapshot standby

INFO: 2016-12-13 23:39:14: ...Starting redo apply for standby database 'CLONE'

INFO: 2016-12-13 23:39:27: ...Setting up storage for SNAP Database 'SDB2'

INFO: 2016-12-13 23:39:27: Entering into SNAP database creation phase 2

INFO: 2016-12-13 23:39:27: ...Creating controlfile for database 'SDB2'

26 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

8) Check the target database (SDB2) creation:

INFO: 2016-12-13 23:40:28: ...Opening the database 'SDB2' with resetlogs

INFO: 2016-12-13 23:40:39: ...Setting the temporary tablespace for database 'SDB2'

INFO: 2016-12-13 23:41:08: ...Changing the Database ID

INFO: 2016-12-13 23:42:02: ...Creating spfile for SDB2

INFO: 2016-12-13 23:42:03: ...Creating password file for SDB2

INFO: 2016-12-13 23:42:03: Entering into SNAP database creation phase 3

INFO: 2016-12-13 23:42:27: ...Successfully started the database

INFO: 2016-12-13 23:42:35: ...Setting RMAN SNAPSHOT control file

INFO: 2016-12-13 23:43:10: Enabling flashback for database 'SDB2'

SUCCESS: 2016-12-13 23:43:25: Successfully created the database 'SDB2' from 'CLONE'

MacroStep3 - Converting clone database 'SDB2' to cluster mode...

WARNING: 2016-12-13 23:43:29: Database 'SDB2' was already running

INFO: 2016-12-13 23:43:29: Database conversion started, it will take some time

SUCCESS: 2016-12-13 23:54:17: Database 'SDB2' converted to RAC succesfully

INFO: 2016-12-13 23:54:17: Cleaning up the setup

$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

CLONE SINGLE PHYSICAL_STANDBY Master /u02/app/oracle/oradata/datastore/.ACFS/snaps/

SDB1 SINGLE PRIMARY Snapshot CLONE

SDB2 RAC PRIMARY Snapshot CLONE

27 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

2. Creating database clone using RMAN backupsets

Databases may be cloned using RMAN backupsets from the production server to minimize the

overhead. The backupset may be exported using the NFS network protocol as the source for the

gDBClone command.

Figure 12 – Creating a database clone using RMAN backupset

The backup sets may be mounted via NFS on the test cluster. In this case, the NFS mount must be

exported using the “insecure” export option on the source server for Oracle Database 12c tools to

access the NFS mount properly. A step by step procedure is described later in this paper.

The following is an example of RMAN source database full backup command:

The gDBClone command (example) is as following:

Output:

RMAN> RUN

{

ALLOCATE CHANNEL disk1 DEVICE TYPE DISK FORMAT '/mnt/backup/ORCL/%U';

BACKUP DATABASE PLUS ARCHIVELOG;

BACKUP AS COPY CURRENT CONTROLFILE FORMAT '/mnt/backup/ORCL/control_%U';

BACKUP SPFILE FORMAT '/mnt/backup/ORCL/spfile_%U';

}

$ sudo /opt/gDBClone/gDBClone clone -sdbname ORCL \

 -sbckloc '/NFS/backup/ORCL' \

 -tdbname GOLD \

 -tdbhome OraDb12102_home1 \

 -dataacfs /u02/app/oracle/oradata/datastore \

 -syspwf /opt/gDBClone/SYSpasswd_file

INFO: 2016-12-14 03:30:36: Please check the logfile '/opt/gDBClone/out/log/gDBClone_70811.log' for more

details

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-14 03:30:36: Validating environment

INFO: 2016-12-14 03:30:36: Checking superuser usage

INFO: 2016-12-14 03:30:36: Checking source backup location /goldengate/tmp...

INFO: 2016-12-14 03:30:36: Checking if target database name 'GOLD' is a valid name

INFO: 2016-12-14 03:30:36: Checking if target database home 'OraDb12102_home1' exists

WARNING: 2016-12-14 03:30:37: ORACLE_BASE is not set

INFO: 2016-12-14 03:30:37: Got Oracle Base from adrci: /u01/app/oracle

INFO: 2016-12-14 03:30:37: Checking if target database 'GOLD' exists

28 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Note: if LOG_ARCHIVE_DEST_2 is set on source database backup, the clone will fail with error "ORA-

16019: cannot use LOG_ARCHIVE_DEST_2 with LOG_ARCHIVE_DEST or

LOG_ARCHIVE_DUPLEX_DEST". Unset LOG_ARCHIVE_DEST_2 on source database, get a full

database backup and retry the clone with “-sbckloc”

Check for the new cloned database “GOLD”:

INFO: 2016-12-14 03:30:37: Checking 'GOLD' snapshot existence on '/u02/app/oracle/oradata/datastore'

INFO: 2016-12-14 03:30:37: Checking registered instance 'GOLD'

INFO: 2016-12-14 03:30:43: Checking listener on 'slcac458:1521'

INFO: 2016-12-14 03:30:43: Checking ACFS command options

INFO: 2016-12-14 03:30:43: Checking if '/u02/app/oracle/oradata/datastore' is an ACFS file system

SUCCESS: 2016-12-14 03:30:43: Environment validation complete

MacroStep2 - Setting up clone environment...

INFO: 2016-12-14 03:30:43: Creating local pfile

INFO: 2016-12-14 03:30:43: Creating local password file

INFO: 2016-12-14 03:30:43: Creating local Audit folder

INFO: 2016-12-14 03:30:43: Creating local auxiliary listener

INFO: 2016-12-14 03:30:43: Starting auxiliary listener

INFO: 2016-12-14 03:30:43: Sleeping 60 secs, please wait

INFO: 2016-12-14 03:31:43: Setting up ACFS storage

INFO: 2016-12-14 03:31:43: Creating dynamic scripts

INFO: 2016-12-14 03:31:46: Cloning to target ACFS from backup location '/goldengate/tmp'

INFO: 2016-12-14 03:31:46: Creating RMAN script for spfile target to ACFS

INFO: 2016-12-14 03:31:46: Instantiating clone database

SUCCESS: 2016-12-14 03:31:46: Environment setup complete

MacroStep3 - Cloning database 'ORCL'...

INFO: 2016-12-14 03:31:46: please wait (this can take a while depending on database size and/or network

speed)

INFO: 2016-12-14 03:35:19: Moving spfile

INFO: 2016-12-14 03:35:43: Updating local dbs pfile/spfile

INFO: 2016-12-14 03:35:44: Register 'GOLD' database as cluster resource

INFO: 2016-12-14 03:35:45: Checking database name

INFO: 2016-12-14 03:35:45: Modifying DB instance

INFO: 2016-12-14 03:35:46: Setup ACFS dependency

INFO: 2016-12-14 03:35:48: Database 'GOLD' dependency to '/u02/app/oracle/oradata/datastore' done

successfully

SUCCESS: 2016-12-14 03:35:48: Successfully created clone database 'GOLD'

INFO: 2016-12-14 03:35:48: Cleaning up the setup

$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

GOLD SINGLE PRIMARY Master /u02/app/oracle/oradata/datastore/.ACFS/snaps/

29 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

3. Clone 11g Database from ASM to ACFS keeping the source running

Prior to Oracle 12c, moving datafiles is always an offline task. Using gDBClone you can “move”

(clone) a database from ASM to ACFS keeping it running. If you need to preserve the transactions

during the cloning operation you may consider the Oracle GoldenGate usage.

Figure 13 – Clone running 11g Database from ASM to ACFS

$ sudo /opt/gDBClone/gDBClone clone -sdbname ORCL \

 -sdbscan exadata316-scan \

 -tdbname CLONE \

 -tdbhome OraDb11204_home1 \

 -dataacfs /u02/app/oracle/oradata/datastore

 [-redoacfs <acfs mount point>]

 [-recoacfs <acfs mount point>]

 [-standby [-pmode maxperf|maxavail|maxprot]

 [-activedg] [-rtapply]]

 [-racmod <db type>]

30 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

4. Create a RAC snapshot database from a GOLD clone running database

Once you got a clone gold image (from a backupset or from a running database) of your production

database you can now, using the ‘gDBCone snap’ function, to create multiple snapshots and

provision for different purposes. The clone can be SI, RAC OneNode or RAC and the snapshot

database can be SI, RAC OneNode or RAC (“-racmod”). You could convert the snapshot database

later also, using the “convert” option.

1) Create a snapshot database SDB from the source standby CLONE database:

Output:

$ sudo /opt/gDBClone/gDBClone snap -sdbname GOLD \

 -tdbname SDB \

 -racmod 2

INFO: 2016-12-15 00:41:00: Please check the logfile '/opt/gDBClone/out/log/gDBClone_22829.log' for more

details

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-15 00:41:00: Validating environment...

INFO: 2016-12-15 00:41:00: Superuser usage check

INFO: 2016-12-15 00:41:00: Database 'GOLD' existence check

INFO: 2016-12-15 00:41:00: Database 'GOLD' running check

WARNING: 2016-12-15 00:41:03: ORACLE_BASE is not set

INFO: 2016-12-15 00:41:03: Got Oracle Base from orabase

INFO: 2016-12-15 00:41:03: Checking if target database name SNAP is a valid name

INFO: 2016-12-15 00:41:03: Checking database 'GOLD' connectivity

INFO: 2016-12-15 00:41:16: Checking whether the database 'GOLD' is in ACFS snapshot

INFO: 2016-12-15 00:41:16: Checking source database 'GOLD' and target dbhome version

INFO: 2016-12-15 00:41:21: Checking if target database 'SNAP' exists

INFO: 2016-12-15 00:41:21: Checking registered instance 'SNAP'

INFO: 2016-12-15 00:41:31: Checking if SNAP exists as snapshot in '/u02/app/oracle/oradata/datastore'

INFO: 2016-12-15 00:41:31: Checking if source database GOLD is snapable

INFO: 2016-12-15 00:41:37: ...Checking whether the database 'GOLD' is entirely on ACFS

INFO: 2016-12-15 00:41:44: ...Checking whether the database 'GOLD' is a primary/physical standby

database.

INFO: 2016-12-15 00:41:47: ...Checking whether the database 'GOLD' is in READ WRITE mode

INFO: 2016-12-15 00:41:53: ...Checking whether the database 'GOLD' is a CDB

INFO: 2016-12-15 00:42:06: ...Checking whether the database 'GOLD' is running as backup mode

INFO: 2016-12-15 00:42:12: ...Checking whether the database 'GOLD' is running in archivelog mode

INFO: 2016-12-15 00:42:18: ...Checking if all the datafiles are available

INFO: 2016-12-15 00:42:24: ...Checking if there are OFFLINE datafiles

SUCCESS: 2016-12-15 00:42:30: Environment validation complete

Figure 13 – Create a RAC snapshot database from a GOLD clone running database

31 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

2) Check the new database created:

MacroStep2 - Getting database snapshot...

INFO: 2016-12-15 00:42:30: Cloning source database 'GOLD' using ACFS snapshot

INFO: 2016-12-15 00:42:56: Entering into SNAP database creation phase 1

INFO: 2016-12-15 00:42:56: ...Getting required information to get consistent database snapshot

WARNING: 2016-12-15 00:43:09: Do not perform any Structural change to database 'GOLD' till SNAP database

'SNAP' is created

INFO: 2016-12-15 00:43:22: ...Getting the snapshot of Database 'GOLD' at this time

INFO: 2016-12-15 00:43:22: ...Successfully took the snapshot 'SNAP' of database 'GOLD' on

'/u02/app/oracle/oradata/datastore'

INFO: 2016-12-15 00:43:29: ...Setting up storage for SNAP Database 'SNAP'

INFO: 2016-12-15 00:44:00: Entering into SNAP database creation phase 2

INFO: 2016-12-15 00:44:00: ...Creating controlfile for database 'SNAP'

INFO: 2016-12-15 00:45:02: ...Recovering the database: SNAP, snapshot time : '2016-12-15:00:43:22',

until 'change:698612'

INFO: 2016-12-15 00:45:03: ...Opening the database with resetlogs

INFO: 2016-12-15 00:45:17: ...Setting the temporary tablespace for database 'SNAP'

INFO: 2016-12-15 00:45:46: ...Changing the Database ID

INFO: 2016-12-15 00:46:41: ...Creating spfile for SNAP

INFO: 2016-12-15 00:46:42: ...Creating password file for SNAP

INFO: 2016-12-15 00:46:42: Entering into SNAP database creation phase 3

INFO: 2016-12-15 00:47:09: ...Successfully started the database

INFO: 2016-12-15 00:47:16: ...Setting RMAN SNAPSHOT control file

INFO: 2016-12-15 00:47:25: ...Disabling the external references in the database 'SNAP' inherited from

'GOLD'

--

Run on the database 'SNAP' the SQL script:

 '/u01/app/oracle/product/12.1.0.2/dbhome_1/enable_external_refs_SNAP_D0yo.sql'

to enable these external references.

Also need to restart the database after running the SQL script.

--

SUCCESS: 2016-12-15 00:48:35: Successfully created the database 'SNAP' from 'GOLD'

MacroStep3 - Converting clone database 'SNAP' to cluster mode...

WARNING: 2016-12-15 00:48:39: Database 'SNAP' was already running

INFO: 2016-12-15 00:48:39: Database conversion started, it will take some time

SUCCESS: 2016-12-15 00:56:40: Database 'SNAP' converted to RAC succesfully

INFO: 2016-12-15 00:56:40: Cleaning up the setup

gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

GOLD SINGLE PRIMARY Master /u02/app/oracle/oradata/datastore/.ACFS/snaps/

SNAP RACOneNode PRIMARY Snapshot GOLD

32 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

5. Create a snapshot RAC database from a standby database

Having a running standby database, using gDBClone is possible to get a snapshot of it. The source

standby can be SI, RAC OneNode or RAC and the snapshot database can be SI, RAC OneNode or

RAC (“-racmod”). You could convert the snapshot database also later using the “convert” option.

1. Check the source Standby database:

2. Create a snapshot database SNAP from the source standby STDBY database:

Output:

$ sudo /opt/gDBClone/gDBClone snap -sdbname STDBY \

 -tdbname SNAP \

 -racmod 2

INFO: 2016-12-15 04:53:16: Please check the logfile '/opt/gDBClone/out/log/gDBClone_31709.log' for more

details

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-15 04:53:16: Validating environment...

INFO: 2016-12-15 04:53:16: Superuser usage check

INFO: 2016-12-15 04:53:16: Database 'STDBY'existence check

INFO: 2016-12-15 04:53:16: Database 'STDBY'running check

WARNING: 2016-12-15 04:53:19: ORACLE_BASE is not set

INFO: 2016-12-15 04:53:19: Got Oracle Base from orabase

INFO: 2016-12-15 04:53:19: Checking if target database name SNAP is a valid name

INFO: 2016-12-15 04:53:19: Checking database 'STDBY' connectivity

INFO: 2016-12-15 04:53:31: Checking whether the database 'STDBY' is in ACFS snapshot

INFO: 2016-12-15 04:53:31: Checking source database 'STDBY' and target dbhome version

INFO: 2016-12-15 04:53:36: Checking if target database 'SNAP' exists

INFO: 2016-12-15 04:53:36: Checking registered instance 'SNAP'

INFO: 2016-12-15 04:53:46: Checking if SNAP exists as snapshot in '/u02/app/oracle/oradata/datastore'

INFO: 2016-12-15 04:53:46: Checking if source database 'STDBY' is snapable

$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

STDBY SINGLE PHYSICAL_STANDBY Master /u02/app/oracle/oradata/datastore/.ACFS/snaps/

Figure 14 – Create a snapshot RAC database from a standby database

33 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

3) Check the new database created:

INFO: 2016-12-15 04:53:52: ...Checking whether the database 'STDBY' is entirely on ACFS

INFO: 2016-12-15 04:53:59: ...Checking whether the database 'STDBY' is a primary/physical standby

database.

INFO: 2016-12-15 04:54:02: ...Checking whether the Physical Standby database 'STDBY' is in MOUNT mode

INFO: 2016-12-15 04:54:08: ...Checking flashback on database 'STDBY'

INFO: 2016-12-15 04:54:14: ...Checking whether the database 'STDBY' is a CDB

INFO: 2016-12-15 04:54:27: ...Checking whether the database 'STDBY' is running in archivelog mode

INFO: 2016-12-15 04:54:33: ...Checking if all the datafiles are available

SUCCESS: 2016-12-15 04:54:39: Environment validation complete

MacroStep2 - Getting database snapshot...

INFO: 2016-12-15 04:54:39: Cloning source database 'STDBY' using ACFS snapshot

INFO: 2016-12-15 04:55:05: Entering into SNAP database creation phase 1

INFO: 2016-12-15 04:55:12: Stopping redo apply for standby database 'STDBY'

INFO: 2016-12-15 04:55:20: Converting physical standby 'STDBY' to snapshot standby

INFO: 2016-12-15 04:55:44: ...Getting the snapshot of Database 'STDBY' at this time

INFO: 2016-12-15 04:55:45: ...Successfully took the snapshot 'SNAP' of database 'STDBY' on

'/u02/app/oracle/oradata/datastore'

INFO: 2016-12-15 04:56:29: ...Converting physical standby 'STDBY' to snapshot standby

INFO: 2016-12-15 04:57:12: ...Starting redo apply for standby database 'STDBY'

INFO: 2016-12-15 04:57:24: ...Setting up storage for SNAP Database 'SNAP'

INFO: 2016-12-15 04:57:25: Entering into SNAP database creation phase 2

INFO: 2016-12-15 04:57:25: ...Creating controlfile for database 'SNAP'

INFO: 2016-12-15 04:58:19: ...Opening the database 'SNAP' with resetlogs

INFO: 2016-12-15 04:58:31: ...Setting the temporary tablespace for database 'SNAP'

INFO: 2016-12-15 04:58:59: ...Changing the Database ID

INFO: 2016-12-15 04:59:53: ...Creating spfile for SNAP

INFO: 2016-12-15 04:59:54: ...Creating password file for SNAP

INFO: 2016-12-15 04:59:54: Entering into SNAP database creation phase 3

INFO: 2016-12-15 05:00:25: ...Successfully started the database

INFO: 2016-12-15 05:00:32: ...Setting RMAN SNAPSHOT control file

INFO: 2016-12-15 05:01:08: Enabling flashback for database 'SNAP'

SUCCESS: 2016-12-15 05:01:22: Successfully created the database 'SNAP' from 'STDBY'

MacroStep3 - Converting clone database 'SNAP' to cluster mode...

WARNING: 2016-12-15 05:01:26: Database 'SNAP' was already running

INFO: 2016-12-15 05:01:26: Database conversion started, it will take some time

SUCCESS: 2016-12-15 05:12:18: Database 'SNAP' converted to RAC succesfully

INFO: 2016-12-15 05:12:18: Cleaning up the setup

$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

STDBY SINGLE PHYSICAL_STANDBY Master /u02/app/oracle/oradata/datastore/.ACFS/snaps/

SNAP RAC PRIMARY Snapshot STDBY

$ sudo /opt/gDBClone/gDBClone listdbs -tree

Parent Child

------ -----

STDBY

 SNAP

34 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

6. Clone a database from RMAN full backup to ACFS as standby Database

Create a snap database NOWK from RMAN backupset and make it as standby of source database

ORCL:

Output:

$ sudo /opt/gDBClone/gDBClone clone -sdbname ORCL \

 -sbckloc '/mnt/ORCL/bck' \

 -sdbscan exa316c1n1-scan \

 -tdbname NOWK \

 -tdbhome OraDb12102_home1 \

 -dataacfs /u02/app/oracle/oradata/datastore \

 -standby

Figure 15 – Clone a database from RMAN full backup to ACFS as standby database

INFO: 2016-12-16 00:10:47: Please check the logfile '/opt/gDBClone/out/log/gDBClone_59610.log' for more

details

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-16 00:10:47: Validating environment

INFO: 2016-12-16 00:10:47: Checking superuser usage

INFO: 2016-12-16 00:10:47: Checking ping to host exa316c1n1-scan'

INFO: 2016-12-16 00:10:47: Checking if target database name 'NOWK' is a valid name

INFO: 2016-12-16 00:10:47: Checking if target database home 'OraDb12102_home1' exists

WARNING: 2016-12-16 00:10:47: ORACLE_BASE is not set

INFO: 2016-12-16 00:10:47: Got Oracle Base from orabase

INFO: 2016-12-16 00:10:47: Checking if target database 'NOWK' exists

INFO: 2016-12-16 00:10:48: Checking 'NOWK' snapshot existence on '/u02/app/oracle/oradata/datastore'

INFO: 2016-12-16 00:10:48: Checking registered instance 'NOWK'

INFO: 2016-12-16 00:10:57: Checking listener on 'slcac458:1521'

INFO: 2016-12-16 00:10:57: Checking FLASHBACK mode

WARNING: 2016-12-16 00:10:58: Source database 'ORCL' is not in FLASHBACK mode

INFO: 2016-12-16 00:10:58: Checking LOG_ARCHIVE_DEST settings

INFO: 2016-12-16 00:10:58: Checking ACFS command options

INFO: 2016-12-16 00:10:58: Checking if '/u02/app/oracle/oradata/datastore' is an ACFS file system

SUCCESS: 2016-12-16 00:10:58: Environment validation complete

35 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

continue…

Check the standby creation:

INFO: 2016-12-16 00:10:58: Creating local pfile

INFO: 2016-12-16 00:10:58: Creating local password file

INFO: 2016-12-16 00:10:58: Creating local Audit folder

INFO: 2016-12-16 00:10:58: Creating local auxiliary listener

INFO: 2016-12-16 00:10:58: Starting auxiliary listener

INFO: 2016-12-16 00:10:58: Sleeping 60 secs, please wait

INFO: 2016-12-16 00:11:58: Setting up ACFS storage

INFO: 2016-12-16 00:11:59: Creating dynamic scripts

INFO: 2016-12-16 00:12:01: Cloning to target ACFS from backup location '/mnt/ORCL/bck' as standby

database

INFO: 2016-12-16 00:12:01: Creating RMAN script for spfile target to ACFS

INFO: 2016-12-16 00:12:01: Instantiating standby database

INFO: 2016-12-16 00:12:01: Enabling force logging

INFO: 2016-12-16 00:12:01: Getting standby logs on source database ORCL

INFO: 2016-12-16 00:12:02: Standby logs exist on source database ORCL

SUCCESS: 2016-12-16 00:12:02: Environment setup complete

MacroStep3 - Cloning database 'ORCL'...

INFO: 2016-12-16 00:12:02: please wait (this can take a while depending on database size and/or network

speed)

INFO: 2016-12-16 00:14:32: Moving spfile

INFO: 2016-12-16 00:14:56: Updating local dbs pfile/spfile

INFO: 2016-12-16 00:14:56: Register 'NOWK' database as cluster resource

INFO: 2016-12-16 00:14:58: Modifying DB instance

INFO: 2016-12-16 00:14:59: Setup ACFS dependency

INFO: 2016-12-16 00:15:01: Database 'NOWK' dependency to '/u02/app/oracle/oradata/datastore' done

successfully

MacroStep5 - Standby setup...

INFO: 2016-12-16 00:15:16: Starting redo apply

INFO: 2016-12-16 00:15:23: Configuring primary database 'ORCL'

SUCCESS: 2016-12-16 00:15:23: Successfully created clone "NOWK" database as standby

INFO: 2016-12-16 00:15:23: Cleaning up the setup

$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

NOWK SINGLE PHYSICAL_STANDBY Master /u02/app/oracle/oradata/datastore/.ACFS/snaps/

36 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

7. Database upgrade using Transient Logical Standby(TLS)

Due to “Hot Database Snapshot as Standby” capability, without impact over the source production database

and "without" storage duplication, leveraging on ACFS snapshot “copy&write” feature, gDBClone is

making a snapshot of a running database as standby. Having a physical standby from a running

production database without downtime is the key to make a database upgrade using the Transient Logical

Standby (TLS).

 The steps could be as following:

1. gDBClone snap as standby --> no downtime, minimal storage duplication (depend on source

database production activity)

2. physru (TLS tool)

3. DBUA

4. physru (TLS tool)

Note: physru is a script to minimize downtime and simplify a database rolling upgrade using a physical

standby database. A 'transient logical' herein refers to the physical standby database that has been

temporarily converted to a transient logical standby database for the purpose of executing the upgrade.

Also see the MAA Best Practice Paper: Database Rolling Upgrades Made Easy, for additional information

describing this process and Oracle11g Data Guard: Database Rolling Upgrade Shell Script (Doc ID

949322.1)

Figure 16 – Database upgrade using Transient Logical Standby (TLS)

http://www.oracle.com/technetwork/database/features/availability/maa-wp-11g-upgrades-made-easy-131972.pdf
https://support.oracle.com/epmos/faces/DocumentDisplay?id=949322.1
https://support.oracle.com/epmos/faces/DocumentDisplay?id=949322.1

37 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

8. Clone a database encrypted with Transparent Data Encryption (TDE)

In this scenario we want use gDBClone to clone/snap database encrypted with the Transparent Data

Encryption (TDE). Before to use gDBClone, you must manually copy the keystore to the duplicate

database. If the keystore is not an auto login (SSO) keystore, then you must convert it to an auto login

keystore at the duplicate database.

In this example we are considering ORCL as source encrypted database, ENCORCL the cloned database

and SNAPENC the snapshot encrypted database

1. Copy the wallet file (ewallet.p12) from source database server to target clone database server.

You can check the wallet file location on source database from sqlnet.ora file of the source database

ORACLE_HOME

2. Modify sqlnet.ora file in target clone database ORACLE_HOME to reflect the location of the

wallet file:

3. Invoke orapki utility on the target clone database server to make the wallet auto-login:

Figura 17 - gDBClone and encrypted database

$ mkdir -p /u01/app/oracle/admin/ENCORCL/tde_wallet

$ scp oracle@prod-serv:/u01/app/oracle/admin/ORCL/tde_wallet/ewallet.p12

/u01/app/oracle/admin/ENCORCL/tde_wallet/

ENCRYPTION_WALLET_LOCATION =

 (SOURCE = (METHOD = FILE)

 (METHOD_DATA =

 (DIRECTORY=/u01/app/oracle/admin/ENCORCL/tde_wallet)

)

)

$ orapki wallet create -wallet /u01/app/oracle/admin/ENCORCL/tde_wallet \

 -pwd "Welcome_1" \

 -auto_login

38 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

4. You can now use gDBClone to clone the source encrypted database

If you need also a database snapshot:

The required wallet will be created under the expected location:

”/u01/app/oracle/admin/SNAPENC/tde_wallet”

Output:

$ sudo /opt/gDBClone/gDBClone clone -sdbname ORCL \

 -sdbscan exadata316-scan \

 -tdbname ENCORCL \

 -tdbhome OraDb12102_home1 \

 -dataacfs /u02/app/oracle/oradata/datastore

$ sudo /opt/gDBClone/gDBClone snap -sdbname ENCORCL -tdbname SNAPENC

INFO: 2016-12-22 08:06:38: Please check the logfile '/opt/gDBClone/out/log/gDBClone_46802.log' for more

details

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-22 08:06:38: Validating environment...

INFO: 2016-12-22 08:06:38: Superuser usage check

INFO: 2016-12-22 08:06:38: Database 'ENCORCL' existence check

INFO: 2016-12-22 08:06:38: Database 'ENCORCL' running check

WARNING: 2016-12-22 08:06:41: ORACLE_BASE is not set

INFO: 2016-12-22 08:06:41: Got Oracle Base from orabase

INFO: 2016-12-22 08:06:41: Checking if target database name SNAPENC is a valid name

INFO: 2016-12-22 08:06:41: Checking database 'ENCORCL' connectivity

INFO: 2016-12-22 08:06:53: Checking whether the database 'ENCORCL' is in ACFS snapshot

INFO: 2016-12-22 08:06:53: Checking source database 'ENCORCL' and target dbhome version

INFO: 2016-12-22 08:06:58: Checking if target database 'SNAPENC' exists

INFO: 2016-12-22 08:06:58: Checking registered instance 'SNAPENC'

INFO: 2016-12-22 08:07:08: Checking if SNAPENC exists as snapshot in '/u02/app/oracle/oradata/datastore'

INFO: 2016-12-22 08:07:08: Checking if source database ENCORCL is snapable

INFO: 2016-12-22 08:07:33: Transparent Data Encryption is enabled on 'ENCORCL'

Please enter the 'WALLET' User password for the database:

Please re-enter the 'WALLET' user password for the database:

INFO: 2016-12-22 08:07:34: ...Checking whether the database 'ENCORCL' is entirely on ACFS

INFO: 2016-12-22 08:07:41: ...Checking whether the database 'ENCORCL' is a primary/physical standby

database.

INFO: 2016-12-22 08:07:44: ...Checking whether the database 'ENCORCL' is in READ WRITE mode

INFO: 2016-12-22 08:07:51: ...Checking whether the database 'ENCORCL' is a CDB

INFO: 2016-12-22 08:08:03: ...Checking whether the database 'ENCORCL' is running as backup mode

INFO: 2016-12-22 08:08:10: ...Checking whether the database 'ENCORCL' is running in archivelog mode

INFO: 2016-12-22 08:08:16: ...Checking if all the datafiles are available

INFO: 2016-12-22 08:08:22: ...Checking if there are OFFLINE datafiles

SUCCESS: 2016-12-22 08:08:28: Environment validation complete

MacroStep2 - Getting database snapshot...

INFO: 2016-12-22 08:08:28: Cloning source database 'ENCORCL' using ACFS snapshot

INFO: 2016-12-22 08:08:54: Entering into SNAP database creation phase 1

INFO: 2016-12-22 08:08:54: ...Getting required information to get consistent database snapshot

WARNING: 2016-12-22 08:09:06: Do not perform any Structural change to database 'ENCORCL' till SNAP

database 'SNAPENC' is created

INFO: 2016-12-22 08:09:20: ...Getting the snapshot of Database 'ENCORCL' at this time

INFO: 2016-12-22 08:09:20: ...Successfully took the snapshot 'SNAPENC' of database 'ENCORCL' on

'/u02/app/oracle/oradata/datastore'

INFO: 2016-12-22 08:09:27: ...Setting up storage for SNAP Database 'SNAPENC'

39 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Continue…

You can avoid the “WALLET” password request if “/opt/gDBClone/WALLETpasswd_file” is

present. You can create such file with the wallet password issuing:

INFO: 2016-12-22 08:09:56: Entering into SNAP database creation phase 2

INFO: 2016-12-22 08:09:56: ...Creating controlfile for database 'SNAPENC'

INFO: 2016-12-22 08:10:57: ...Recovering the database: SNAPENC, snapshot time : '2016-12-22:08:09:20',

until 'change:2566598'

INFO: 2016-12-22 08:10:57: ...Opening the database with resetlogs

INFO: 2016-12-22 08:11:12: ...Setting the temporary tablespace for database 'SNAPENC'

INFO: 2016-12-22 08:11:40: ...Changing the Database ID

INFO: 2016-12-22 08:12:35: ...Creating spfile for SNAPENC

INFO: 2016-12-22 08:12:36: ...Creating password file for SNAPENC

INFO: 2016-12-22 08:12:36: Entering into SNAP database creation phase 3

INFO: 2016-12-22 08:13:01: ...Successfully started the database

INFO: 2016-12-22 08:13:09: ...Setting RMAN SNAPSHOT control file

INFO: 2016-12-22 08:13:18: ...Disabling the external references in the database 'SNAPENC' inherited from

'ENCORCL'

--

Run on the database 'SNAPENC' the SQL script:

 '/u01/app/oracle/product/12.1.0.2/dbhome_1/enable_external_refs_SNAPENC_i7tZ.sql'

to enable these external references.

Also need to restart the database after running the SQL script.

--

SUCCESS: 2016-12-22 08:14:30: Successfully created the database 'SNAPENC' from 'ENCORCL'

INFO: 2016-12-22 08:14:32: Cleaning up the setup

$ sudo /opt/gDBClone/gDBClone syspwf -syspwf WALLETpasswd_file

40 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

9. Using gDBClone in Oracle Public Cloud (RACDBaaS)

In this scenario we want use gDBClone to clone/snap database running on Oracle Public Cloud (OPC)

RACDBaaS.

Note as a snapshot of parent snapshot (used on getting a database snapshot: “gDBClone snap”) is

possible when the Oracle ASM Dynamic Volume Manager (Oracle ADVM) compatibility attribute for the

disk group is not less than 12.1. Before to use gDBClone on OPC you should verify the

compatible.advm for DATA diskgroup and in case make it at least at 12.1

As “grid” user setup the compatible.advm to 12.1.0.0.0 as following:

Create a clone database GOLD from the source ORCL database (“-opc” is a required command ption):

Figure 18 - gDBClone in Oracle Public Cloud (OPC) – RACDBaaS

$ sudo /opt/gDBClone/gDBClone clone -sdbname orcl.gboracle60892.oraclecloud.internal

 -sdbscan rcrac-scan-int

 -tdbname GOLD

 -tdbhome OraDB11204_home1

 -dataacfs /u02

 -redoacfs /u04

 -recoacfs /u03

 -opc

[grid@rcrac1 ~]$ asmcmd setattr -G DATA compatible.advm 12.1.0.0.0

[grid@rcrac1 ~]$ asmcmd lsattr -G DATA -l |grep compatible

compatible.advm 11.2.0.4

compatible.asm 12.1.0.0.0

compatible.rdbms 11.2.0.4

41 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Output:

Check the database clone creation:

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-22 10:21:47: Validating environment

INFO: 2016-12-22 10:21:47: Checking superuser usage

INFO: 2016-12-22 10:21:47: Checking if target database name 'GOLD' is a valid name

INFO: 2016-12-22 10:21:47: Checking if target database home 'OraDB11204_home1' exists

WARNING: 2016-12-22 10:21:48: ORACLE_BASE is not set

INFO: 2016-12-22 10:21:48: Got Oracle Base from orabase

INFO: 2016-12-22 10:21:48: Checking if target database 'GOLD' exists

INFO: 2016-12-22 10:21:48: Checking 'GOLD' snapshot existence on '/u02'

INFO: 2016-12-22 10:21:48: Checking registered instance 'GOLD'

INFO: 2016-12-22 10:21:50: Checking listener on 'rcrac1:1521'

INFO: 2016-12-22 10:21:50: Checking source and target database version

INFO: 2016-12-22 10:21:52: Checking source log mode

INFO: 2016-12-22 10:21:52: Checking Flash Cache setting

INFO: 2016-12-22 10:21:53: Checking ACFS command options

INFO: 2016-12-22 10:21:53: Checking if '/u02' is an ACFS file system

INFO: 2016-12-22 10:21:53: Checking if '/u04' is an ACFS file system

INFO: 2016-12-22 10:21:53: Checking if '/u03' is an ACFS file system

SUCCESS: 2016-12-22 10:21:53: Environment validation complete

MacroStep2 - Setting up clone environment...

INFO: 2016-12-22 10:21:53: Creating local pfile

INFO: 2016-12-22 10:21:53: Creating local password file

INFO: 2016-12-22 10:21:53: Creating local Audit folder

INFO: 2016-12-22 10:21:53: Creating local auxiliary listener

INFO: 2016-12-22 10:21:53: Starting auxiliary listener

INFO: 2016-12-22 10:21:53: Sleeping 60 secs, please wait

INFO: 2016-12-22 10:22:53: Setting up ACFS storage

INFO: 2016-12-22 10:22:53: Creating dynamic scripts

INFO: 2016-12-22 10:22:55: Cloning to target ACFS from host 'rcrac-scan-int'

INFO: 2016-12-22 10:22:55: Creating RMAN script for spfile target to ACFS

INFO: 2016-12-22 10:22:56: Instantiating clone database

SUCCESS: 2016-12-22 10:22:56: Environment setup complete

MacroStep3 - Cloning database 'orcl.gboracle60892.oraclecloud.internal'...

INFO: 2016-12-22 10:22:56: please wait (this can take a while depending on database size and/or network

speed)

INFO: 2016-12-22 10:26:20: Moving spfile

INFO: 2016-12-22 10:26:34: Updating local dbs pfile/spfile

INFO: 2016-12-22 10:26:34: Register 'GOLD' database as cluster resource

INFO: 2016-12-22 10:26:37: Checking database name

INFO: 2016-12-22 10:26:37: Modifying DB instance

INFO: 2016-12-22 10:26:38: Setup ACFS dependency

INFO: 2016-12-22 10:26:41: Database 'GOLD' dependency to '/u02,/u04,/u03' done successfully

SUCCESS: 2016-12-22 10:26:41: Successfully created clone database 'GOLD'

INFO: 2016-12-22 10:26:41: Cleaning up the setup

[oracle@rcrac1 gDBClone]$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

GOLD SINGLE PRIMARY Master /u02/.ACFS/snaps/

orcl RAC PRIMARY Master /u02/app/oracle/oradata

42 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Get a database snapshot from clone single instance GOLD source database created above and make it as

RAC:

Output:

$ sudo /opt/gDBClone/ gDBClone snap -sdbname GOLD \
 -tdbname S1GOLD \

 -racmod 2 \

 -opc

MacroStep1 - Getting information and validating setup...

INFO: 2016-12-22 10:28:14: Validating environment...

INFO: 2016-12-22 10:28:14: Superuser usage check

INFO: 2016-12-22 10:28:14: Database 'GOLD' existence check

INFO: 2016-12-22 10:28:14: Database 'GOLD' running check

WARNING: 2016-12-22 10:28:16: ORACLE_BASE is not set

INFO: 2016-12-22 10:28:16: Got Oracle Base from orabase

INFO: 2016-12-22 10:28:16: Checking if target database name S1GOLD is a valid name

INFO: 2016-12-22 10:28:16: Checking database 'GOLD' connectivity

INFO: 2016-12-22 10:28:25: Checking whether the database 'GOLD' is in ACFS snapshot

INFO: 2016-12-22 10:28:25: Checking source database 'GOLD' and target dbhome version

INFO: 2016-12-22 10:28:29: Checking if target database 'S1GOLD' exists

INFO: 2016-12-22 10:28:30: Checking registered instance 'S1GOLD'

INFO: 2016-12-22 10:28:34: Checking if S1GOLD exists as snapshot in '/u02'

INFO: 2016-12-22 10:28:34: Checking if source database GOLD is snapable

INFO: 2016-12-22 10:28:39: ...Checking whether the database 'GOLD' is entirely on ACFS

INFO: 2016-12-22 10:28:43: ...Checking whether the database 'GOLD' is a primary/physical standby database.

INFO: 2016-12-22 10:28:45: ...Checking whether the database 'GOLD' is in READ WRITE mode

INFO: 2016-12-22 10:28:50: ...Checking whether the database 'GOLD' is a CDB

INFO: 2016-12-22 10:28:54: ...Checking whether the database 'GOLD' is running as backup mode

INFO: 2016-12-22 10:28:58: ...Checking whether the database 'GOLD' is running in archivelog mode

INFO: 2016-12-22 10:29:03: ...Checking if all the datafiles are available

INFO: 2016-12-22 10:29:07: ...Checking if there are OFFLINE datafiles

SUCCESS: 2016-12-22 10:29:11: Environment validation complete

MacroStep2 - Getting database snapshot...

INFO: 2016-12-22 10:29:11: Cloning source database 'GOLD' using ACFS snapshot

INFO: 2016-12-22 10:29:29: Entering into SNAP database creation phase 1

INFO: 2016-12-22 10:29:29: ...Getting required information to get consistent database snapshot

WARNING: 2016-12-22 10:29:33: Setting the database 'GOLD' in backup mode

INFO: 2016-12-22 10:29:48: ...Getting the snapshot of Database 'GOLD' at this time

INFO: 2016-12-22 10:29:49: ...Successfully took the snapshot 'S1GOLD' of database 'GOLD' on '/u02'

WARNING: 2016-12-22 10:29:59: Ending the database 'GOLD' backup mode

INFO: 2016-12-22 10:30:04: ...Setting up storage for SNAP Database 'S1GOLD'

INFO: 2016-12-22 10:30:27: Entering into SNAP database creation phase 2

INFO: 2016-12-22 10:30:27: ...Creating controlfile for database 'S1GOLD'

INFO: 2016-12-22 10:30:46: ...Recovering the database 'S1GOLD', until change:1538492

INFO: 2016-12-22 10:30:47: ...Opening the database with resetlogs

INFO: 2016-12-22 10:30:54: ...Setting the temporary tablespace for database 'S1GOLD'

INFO: 2016-12-22 10:31:21: ...Changing the Database ID

INFO: 2016-12-22 10:31:58: ...Creating spfile for S1GOLD

INFO: 2016-12-22 10:31:59: ...Creating password file for S1GOLD

INFO: 2016-12-22 10:31:59: Entering into SNAP database creation phase 3

INFO: 2016-12-22 10:32:22: ...Successfully started the database

INFO: 2016-12-22 10:32:22: ...Setting RMAN SNAPSHOT control file

INFO: 2016-12-22 10:32:29: ...Disabling the external references in the database 'S1GOLD' inherited from 'GOLD'

--

Run on the database 'S1GOLD' the SQL script:

 '/u01/app/oracle/product/11.2.0.4/dbhome_1/enable_external_refs_S1GOLD_CcSs.sql'

to enable these external references.

Also need to restart the database after running the SQL script.

--

INFO: 2016-12-22 10:33:17: Enabling block change tracking for database 'S1GOLD'

SUCCESS: 2016-12-22 10:33:25: Successfully created the database 'S1GOLD' from 'GOLD'

43 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Continue…

Check the database clone creation:

[oracle@rcrac1 gDBClone]$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

S1GOLD RAC PRIMARY Snapshot GOLD

GOLD SINGLE PRIMARY Master /u02/.ACFS/snaps/

orcl RAC PRIMARY Master /u02/app/oracle/oradata

MacroStep3 - Converting clone database 'S1GOLD' to cluster mode...

WARNING: 2016-12-22 10:33:28: Database 'S1GOLD' was already running

INFO: 2016-12-22 10:33:28: Database conversion started, it will take some time

SUCCESS: 2016-12-22 10:39:36: Database 'S1GOLD' converted to RAC succesfully

INFO: 2016-12-22 10:39:36: Cleaning up the setup

44 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

10. Using gDBClone on ODA X6-2 S,M,L (Enterprise Edition)

At the time of writing this document, on ODA X6-2 S,M,L the snapshot database feature is not

supported, then you can use gDBClone to get a database snapshot. Note as this is possible only if an

Enterprise Edition deploy has been done as gDBClone is using RMAN snapshot time recovery feature

available on Enterprise Edition only. Before to get a database snapshot with gDBClone you must get a

source database “clone” as by default, on ODA X6-2 S,M,L the databases are stored on ACFS “root”

filesystem and not on an ACFS filesystem snapshot. Once you have the clone database you could remove

the source database to save storage space.

Check the source database:

Make a new ODA “DB storage” for the clone database issuing:

Get a clone database from the source ‘ORCL’:

[oracle@odas gDBClone]$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

ORCL SINGLE PRIMARY Master /u02/app/oracle/oradata

$ sudo /opt/gDBClone/gDBClone clone -sdbname ORCL.it.oracle.com \

 -sdbscan odas-scan \

 -tdbname CLONE \

 -tdbhome OraDB12102_home1 \

 -dataacfs /u02/app/oracle/oradata/CLONE \

 -recoacfs /u03/app/oracle/fast_recovery_area \

 -redoacfs /u03/app/oracle/redo

odacli create-dbstorage --dbname CLONE

{

 "jobId" : "4c7a481c-59b0-4b70-ab30-67c24c05001a",

 "status" : "Created",

 "message" : null,

 "reports" : [],

 "createTimestamp" : "January 23, 2017 06:13:30 AM PST",

 "description" : "Database storage service creation with db name: CLONE",

 "updatedTime" : "January 23, 2017 06:13:30 AM PST"

}

45 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Output:

Check the new clone database:

MacroStep1 - Getting information and validating setup...

Please enter the 'SYS' User password for the database ORCL.us.oracle.com:

Please re-enter the 'SYS' user password for the database ORCL.us.oracle.com:

INFO: 2017-01-23 07:49:27: Validating environment

INFO: 2017-01-23 07:49:27: Checking superuser usage

INFO: 2017-01-23 07:49:27: Checking ping to host 'rwsodas001-scan'

INFO: 2017-01-23 07:49:27: Checking if target database name 'CLONE' is a valid name

INFO: 2017-01-23 07:49:27: Checking if target database home 'OraDB12102_home1' exists

WARNING: 2017-01-23 07:49:28: ORACLE_BASE is not set

INFO: 2017-01-23 07:49:28: Got Oracle Base from orabase

INFO: 2017-01-23 07:49:28: Checking if target database 'CLONE' exists

INFO: 2017-01-23 07:49:28: Checking 'CLONE' snapshot existence on '/u02/app/oracle/oradata/CLONE'

INFO: 2017-01-23 07:49:28: Checking registered instance 'CLONE'

INFO: 2017-01-23 07:49:31: Checking listener on 'rwsodas001:1521'

INFO: 2017-01-23 07:49:31: Checking source and target database version

INFO: 2017-01-23 07:49:34: Checking source log mode

INFO: 2017-01-23 07:49:34: Checking Flash Cache setting

INFO: 2017-01-23 07:49:34: Checking ACFS command options

INFO: 2017-01-23 07:49:34: Checking if '/u02/app/oracle/oradata/CLONE' is an ACFS file system

INFO: 2017-01-23 07:49:34: Checking if '/u03/app/oracle/redo' is an ACFS file system

INFO: 2017-01-23 07:49:34: Checking if '/u03/app/oracle/fast_recovery_area' is an ACFS file system

SUCCESS: 2017-01-23 07:49:34: Environment validation complete

MacroStep2 - Setting up clone environment...

INFO: 2017-01-23 07:49:34: Creating local pfile

INFO: 2017-01-23 07:49:35: Creating local password file

INFO: 2017-01-23 07:49:35: Creating local Audit folder

INFO: 2017-01-23 07:49:35: Creating local auxiliary listener

INFO: 2017-01-23 07:49:35: Starting auxiliary listener

INFO: 2017-01-23 07:49:35: Sleeping 60 secs, please wait

INFO: 2017-01-23 07:50:35: Setting up ACFS storage

INFO: 2017-01-23 07:50:35: Creating dynamic scripts

INFO: 2017-01-23 07:50:37: Cloning to target ACFS from host 'rwsodas001-scan'

INFO: 2017-01-23 07:50:37: Creating RMAN script for spfile target to ACFS

INFO: 2017-01-23 07:50:37: Instantiating clone database

SUCCESS: 2017-01-23 07:50:37: Environment setup complete

MacroStep3 - Cloning database 'ORCL.us.oracle.com'...

INFO: 2017-01-23 07:50:37: please wait (this can take a while depending on database size and/or network speed)

INFO: 2017-01-23 07:52:05: Moving spfile

INFO: 2017-01-23 07:52:25: Updating local dbs pfile/spfile

INFO: 2017-01-23 07:52:25: Register 'CLONE' database as cluster resource

INFO: 2017-01-23 07:52:26: Checking database name

INFO: 2017-01-23 07:52:26: Modifying DB instance

INFO: 2017-01-23 07:52:27: Setup ACFS dependency

INFO: 2017-01-23 07:52:29: Database 'CLONE' dependency to

'/u02/app/oracle/oradata/CLONE,/u03/app/oracle/redo,/u03/app/oracle/fast_recovery_area' done successfully

SUCCESS: 2017-01-23 07:52:29: Successfully created clone database 'CLONE'

INFO: 2017-01-23 07:52:29: Cleaning up the setup

[oracle@odas gDBClone]$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

ORCL SINGLE PRIMARY Master /u02/app/oracle/oradata

CLONE SINGLE PRIMARY Master /u02/app/oracle/oradata/CLONE/.ACFS/snaps/

46 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

You could register the new clone database to the dcs-agent so it can be managed by the dcs-agent stack

also. In order to do so you must de-register the clone db into the cluster (done by gDBClone) as

“odacli register-database” will fail otherwise, the steps are as following:

1. stop the database

2. de-register the database

3. startup the database using SQL*Plus

4. Run the ‘odacli register-database’ command:

Check the new registered database:

You can now leverage on the gDBClone snapshot feature:

$ sudo /opt/gDBClone/gDBClone snap -sdbname CLONE \

 -tdbname SNAP

odacli register-database --dbclass OLTP --dbshape odb1 --servicename CLONE.it.oracle.com -p

Password for SYS:

{

 "jobId" : "8c99c372-f1fc-4da8-a2a6-104e45a9d4f9",

 "status" : "Created",

 "message" : null,

 "reports" : [],

 "createTimestamp" : "January 23, 2017 07:01:57 AM PST",

 "description" : "Database service registration with db service name: CLONE.it.oracle.com",

 "updatedTime" : "January 23, 2017 07:01:57 AM PST"

}

$ srvctl stop database -d CLONE

$ srvctl remove database -d CLONE

Remove the database CLONE? (y/[n]) y

$ export ORACLE_SID=CLONE

$ sqlplus / as sysdba

SQL> startup

odacli list-databases

ID DB Name DB Version CDB Class Shape Storage Status

-- ---------- --------------- ---------- -------- -------- ---------- ----------

baf88246-1538-4fee-87fe-0ede412c37ae ORCL 12.1.0.2 false OLTP odb1 ACFS Configured

589d5ac0-0556-429a-8ba6-6b3e070946a6 CLONE 12.1.0.2 false OLTP odb1 ACFS Configured

47 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Output:

MacroStep1 - Getting information and validating setup...

Please enter the 'SYS' User password for the database CLONE:

Please re-enter the 'SYS' user password for the database CLONE:

INFO: 2017-01-23 08:59:10: Validating environment...

INFO: 2017-01-23 08:59:10: Superuser usage check

INFO: 2017-01-23 08:59:10: Database 'CLONE' existence check

INFO: 2017-01-23 08:59:11: Database 'CLONE' running check

WARNING: 2017-01-23 08:59:14: ORACLE_BASE is not set

INFO: 2017-01-23 08:59:14: Got Oracle Base from orabase

INFO: 2017-01-23 08:59:14: Checking if target database name SNAP is a valid name

INFO: 2017-01-23 08:59:14: Checking database 'CLONE' connectivity

INFO: 2017-01-23 08:59:24: Checking whether the database 'CLONE' is in ACFS snapshot

INFO: 2017-01-23 08:59:24: Checking source database 'CLONE' and target dbhome version

INFO: 2017-01-23 08:59:30: Checking if target database 'SNAP' exists

INFO: 2017-01-23 08:59:30: Checking registered instance 'SNAP'

INFO: 2017-01-23 08:59:47: Checking if SNAP exists as snapshot in '/u02/app/oracle/oradata/CLONE'

INFO: 2017-01-23 08:59:47: Checking if source database CLONE is snapable

INFO: 2017-01-23 08:59:53: ...Checking whether the database 'CLONE' is entirely on ACFS

INFO: 2017-01-23 08:59:58: ...Checking whether the database 'CLONE' is a primary/physical standby database.

INFO: 2017-01-23 09:00:01: ...Checking whether the database 'CLONE' is in READ WRITE mode

INFO: 2017-01-23 09:00:07: ...Checking whether the database 'CLONE' is a CDB

INFO: 2017-01-23 09:00:17: ...Checking whether the database 'CLONE' is running as backup mode

INFO: 2017-01-23 09:00:22: ...Checking whether the database 'CLONE' is running in archivelog mode

INFO: 2017-01-23 09:00:27: ...Checking if all the datafiles are available

INFO: 2017-01-23 09:00:33: ...Checking if there are OFFLINE datafiles

SUCCESS: 2017-01-23 09:00:38: Environment validation complete

MacroStep2 - Getting database snapshot...

INFO: 2017-01-23 09:00:38: Cloning source database 'CLONE' using ACFS snapshot

INFO: 2017-01-23 09:00:59: Entering into SNAP database creation phase 1

INFO: 2017-01-23 09:00:59: ...Getting required information to get consistent database snapshot

WARNING: 2017-01-23 09:01:09: Do not perform any Structural change to database 'CLONE' till SNAP database

'SNAP' is created

INFO: 2017-01-23 09:01:21: ...Getting the snapshot of Database 'CLONE' at this time

INFO: 2017-01-23 09:01:21: ...Successfully took the snapshot 'SNAP' of database 'CLONE' on

'/u02/app/oracle/oradata/CLONE'

INFO: 2017-01-23 09:01:26: ...Setting up storage for SNAP Database 'SNAP'

INFO: 2017-01-23 09:01:48: Entering into SNAP database creation phase 2

INFO: 2017-01-23 09:01:48: ...Creating controlfile for database 'SNAP'

INFO: 2017-01-23 09:01:58: ...Recovering the database: SNAP, snapshot time : '2017-01-23:09:01:21', until

'change:1396033'

INFO: 2017-01-23 09:01:59: ...Opening the database with resetlogs

INFO: 2017-01-23 09:02:04: ...Setting the temporary tablespace for database 'SNAP'

INFO: 2017-01-23 09:02:28: ...Changing the Database ID

INFO: 2017-01-23 09:03:12: ...Creating spfile for SNAP

INFO: 2017-01-23 09:03:13: ...Creating password file for SNAP

INFO: 2017-01-23 09:03:13: Entering into SNAP database creation phase 3

INFO: 2017-01-23 09:03:32: ...Successfully started the database

INFO: 2017-01-23 09:03:38: ...Setting RMAN SNAPSHOT control file

INFO: 2017-01-23 09:03:45: ...Disabling the external references in the database 'SNAP' inherited from 'CLONE'

--

Run on the database 'SNAP' the SQL script:

 '/u01/app/oracle/product/12.1.0.2/dbhome_1/enable_external_refs_SNAP_ktnd.sql'

to enable these external references.

Also need to restart the database after running the SQL script.

--

SUCCESS: 2017-01-23 09:04:35: Successfully created the database 'SNAP' from 'CLONE'

INFO: 2017-01-23 09:04:36: Cleaning up the setup

48 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

 Check the SNAP database creation:

Note: DCS-Agent does not support databases created using the “gDBClone snap” feature.

[oracle@odas gDBClone]$ sudo /opt/gDBClone/gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

ORCL SINGLE PRIMARY Master /u02/app/oracle/oradata

CLONE SINGLE PRIMARY Master /u02/app/oracle/oradata/CLONE/.ACFS/snaps/

SNAP SINGLE PRIMARY Snapshot CLONE

49 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

11. Migrate a database from OPC to BMC using gDBClone

In this scenario, we want use gDBClone to migrate a database running on Oracle Public Cloud (OPC) to

Oracle Bare Metal Cloud Service (BMC).

Requirements

• Source database on OPC must have Access Rule “ora_p2_dblistener” enabled

• Source database time zone must be available on target DB home (DST Patches), check the timezone

in use by the database using the following query:

In this example, time zone ver.28 must be present on BMC $ORACLE_HOME/oracore/zoneinfo:

Figure 19 – OPC to BMC using gDBClone

col PROPERTY_NAME format a30

col VALUE format a5

SELECT PROPERTY_NAME, SUBSTR(property_value, 1, 30) value

 FROM DATABASE_PROPERTIES

 WHERE PROPERTY_NAME LIKE 'DST_%' ORDER BY PROPERTY_NAME;

PROPERTY_NAME VALUE

------------------------------ -----

DST_PRIMARY_TT_VERSION 28

DST_SECONDARY_TT_VERSION 0

DST_UPGRADE_STATE NONE

[root@BMC ~]# ls -l /u01/app/oracle/product/12.1.0.2/dbhome_1/oracore/zoneinfo/*28*

-rw-r--r-- 1 oracle oinstall 53922 May 17 03:55

/u01/app/oracle/product/12.1.0.2/dbhome_1/oracore/zoneinfo/readme_28.txt

-rw-r--r-- 1 oracle oinstall 782585 May 17 03:55

/u01/app/oracle/product/12.1.0.2/dbhome_1/oracore/zoneinfo/timezlrg_28.dat

-rw-r--r-- 1 oracle oinstall 341401 May 17 03:55

/u01/app/oracle/product/12.1.0.2/dbhome_1/oracore/zoneinfo/timezone_28.dat

50 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

• Make on BMC a new “DB storage” for the target database issuing:

•

•

•

•

• Setup the wallet file on BMC

1. Copy the wallet file (ewallet.p12) from the OPC database server to target BMC database server.

You can check the wallet file location on source database from sqlnet.ora file of the source database

ORACLE_HOME

2. Modify sqlnet.ora file on target BMC database ORACLE_HOME to reflect the location of the

wallet file:

3. Invoke orapki utility on the target clone database server to make the wallet auto-login (the

password is an example):

You can now execute gDBClone

[root@BMC ~]# dbcli create-dbstorage --dbname RC12CBMC

{

 "jobId" : "cba4b195-80d2-413d-806e-31b2f850809a",

 "status" : "Created",

 "message" : null,

 "reports" : [],

 "createTimestamp" : "May 23, 2017 08:16:50 AM UTC",

 "resourceList" : [],

 "description" : "Database storage service creation with db name: RC12CBMC",

 "updatedTime" : "May 23, 2017 08:16:50 AM UTC"

}

$ mkdir -p /opt/oracle/dcs/commonstore/wallets/tde/RC12CBMC

$ scp oracle@opc:/u01/app/oracle/admin/RC12COPC/tde_wallet/ewallet.p12

oracle@bmc:/opt/oracle/dcs/commonstore/wallets/tde/RC12CBMC/

$ chmod 600 /opt/oracle/dcs/commonstore/wallets/tde/RC12CBMC/ewallet.p12

ENCRYPTION_WALLET_LOCATION =

 (SOURCE = (METHOD = FILE)

 (METHOD_DATA =

 (DIRECTORY=/opt/oracle/dcs/commonstore/wallets/tde/RC12CBMC)

)

)

$ orapki wallet create -wallet /opt/oracle/dcs/commonstore/wallets/tde/RC12CBMC \

 -pwd "Welcome_1" \

 -auto_login

51 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Create the password file for gDBClone:

run gDBClone as following:

[root@BMC ~]# /opt/gDBClone/gDBClone syspwf -syspwf /opt/gDBClone/SYS.passwd

Please enter the SYS User password :

Please re-enter the SYS user password :

SYS password file created as /opt/gDBClone/SYS.passwd

[root@BMC ~]# nohup /opt/gDBClone/gDBClone clone \

 -sdbname RC12COPC.gboracle88888.oraclecloud.internal \

 -sdbscan 140.85.10.81 \

 -tdbname RC12CBMC \

 -tdbhome OraDB12102_home1 \

 -dataacfs /u02/app/oracle/oradata/RC12CBMC \

 -redoacfs /u03/app/oracle/redo \

 -recoacfs /u03/app/oracle/fast_recovery_area \

 -opc \

 -syspwf /opt/gDBClone/SYS.passwd &

52 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Output:

Check the database creation:

MacroStep1 - Getting information and validating setup...

INFO: 2017-05-23 08:59:42: Validating environment

INFO: 2017-05-23 08:59:42: Checking superuser usage

INFO: 2017-05-23 08:59:42: Checking if target database name 'RC12CBMC' is a valid name

INFO: 2017-05-23 08:59:42: Checking if target database home 'OraDB12102_home1' exists

WARNING: 2017-05-23 08:59:42: ORACLE_BASE is not set

INFO: 2017-05-23 08:59:42: Got Oracle Base from orabase

INFO: 2017-05-23 08:59:42: Checking if target database 'RC12CBMC' exists

INFO: 2017-05-23 08:59:43: Checking 'RC12CBMC' snapshot existence on '/u02/app/oracle/oradata/RC12CBMC'

INFO: 2017-05-23 08:59:43: Checking registered instance 'RC12CBMC'

INFO: 2017-05-23 08:59:43: Checking listener on 'rc12c:1521'

INFO: 2017-05-23 08:59:43: Checking source and target database version

INFO: 2017-05-23 08:59:49: Checking source log mode

INFO: 2017-05-23 08:59:52: Checking Flash Cache setting

INFO: 2017-05-23 08:59:55: Checking ACFS command options

INFO: 2017-05-23 08:59:55: Checking if '/u02/app/oracle/oradata/RC12CBMC' is an ACFS file system

INFO: 2017-05-23 08:59:55: Checking if '/u03/app/oracle/redo' is an ACFS file system

INFO: 2017-05-23 08:59:55: Checking if '/u03/app/oracle/fast_recovery_area' is an ACFS file system

SUCCESS: 2017-05-23 08:59:55: Environment validation complete

MacroStep2 - Setting up clone environment...

INFO: 2017-05-23 08:59:55: Creating local pfile

INFO: 2017-05-23 08:59:58: Creating local password file

INFO: 2017-05-23 08:59:58: Creating local Audit folder

INFO: 2017-05-23 08:59:58: Creating local auxiliary listener

INFO: 2017-05-23 08:59:58: Starting auxiliary listener

INFO: 2017-05-23 08:59:58: Sleeping 60 secs, please wait

INFO: 2017-05-23 09:00:58: Setting up ACFS storage

INFO: 2017-05-23 09:00:58: Creating dynamic scripts

INFO: 2017-05-23 09:00:59: Cloning to target ACFS from host '140.85.10.81'

INFO: 2017-05-23 09:00:59: Creating RMAN script for spfile target to ACFS

INFO: 2017-05-23 09:00:59: Instantiating clone database

SUCCESS: 2017-05-23 09:00:59: Environment setup complete

MacroStep3 - Cloning database 'RC12COPC.gboracle88888.oraclecloud.internal'...

INFO: 2017-05-23 09:00:59: please wait (this can take a while depending on database size and/or network speed)

INFO: 2017-05-23 09:12:18: Moving spfile

INFO: 2017-05-23 09:12:51: Updating local dbs pfile/spfile

INFO: 2017-05-23 09:12:51: Register 'RC12CBMC' database as cluster resource

INFO: 2017-05-23 09:12:55: Checking database name

INFO: 2017-05-23 09:12:55: Modifying DB instance

INFO: 2017-05-23 09:12:56: Setup ACFS dependency

INFO: 2017-05-23 09:12:58: Database 'RC12CBMC' dependency to

'/u02/app/oracle/oradata/RC12CBMC,/u03/app/oracle/redo,/u03/app/oracle/fast_recovery_area' done successfully

INFO: 2017-05-23 09:12:58: Starting database 'RC12CBMC'

SUCCESS: 2017-05-23 09:13:10: Successfully created clone database 'RC12CBMC'

INFO: 2017-05-23 09:13:10: Cleaning up the setup

[root@BMC ~]# gDBClone listdbs

Database Name Database Type Database Role Master/Snapshot Location/Parent

------------- ------------- ------------- --------------- ---------------

RC12CBMC SINGLE PRIMARY Master /u02/app/oracle/oradata/RC12CBMC/.ACFS/snaps/

53 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

You could register the new clone database to the dcs-agent so it can be managed by the dcs-agent stack

also. In order to do so the “COMPATIBLE” parameter must be in the form of 4 numbers (x.y.z.w)

example: “12.1.0.2” (12.1.0.2.0 is not valid) and the database password must have at least two

uppercase, two lowercase, two special chars and two numbers (example: “WElcome__12”). You must de-

register the clone db into the cluster (done by gDBClone) as “dbcli register-database” will fail

otherwise, the steps are as following:

1. set the compatible parameter

2. Set the SYS password to support “dbcli registration”

3. stop the database

4. de-register the database

5. startup the database using SQL*Plus

6. Run the ‘odacli register-database’ command:

[root@BMC ~]# dbcli register-database \

 --dbclass OLTP \

 --dbshape odb2 \

 --servicename RC12CBMC.gboracle60892.oraclecloud.internal \

 -p

Password for SYS:

{

 "jobId" : "36a28b76-43d7-4fe8-a8ff-11f96bc08e26",

 "status" : "Created",

 "message" : null,

 "reports" : [],

 "createTimestamp" : "May 23, 2017 09:32:52 AM UTC",

 "resourceList" : [],

 "description" : "Database service registration with db service name:

RC12CBMC.gboracle60000.oraclecloud.internal",

 "updatedTime" : "May 23, 2017 09:32:52 AM UTC"

}

$ srvctl stop database -d RC12CBMC

$ srvctl remove database -d RC12CBMC

Remove the database RC12CBMC? (y/[n]) y

$ export ORACLE_SID=RC12CBMC

$ sqlplus / as sysdba

SQL> startup

SQL> alter system set compatible='12.1.0.2' scope=spfile;

SQL> alter user sys identified by "WElcome__12";

54 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Check the new registered database:

[root@BMC ~]# dbcli list-databases

ID DB Name DB Version CDB Class Shape Storage Status

------------------------------------ ---------- ------------------- ---------- -------- -------- ---------- ----------

19e4b52a-4ef0-4aaa-8d56-cae6dd0b069d RC12CBMC 12.1.0.2 true OLTP odb2 ACFS Configured

55 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

12. Test & Dev Management environment example

Test System Configuration

• A two-node test & dev cluster: TestCluster1

• Database on test and dev cluster

o TestCluster1 server running

▪ 12.1 RACM database ‘RAC’

• Database on production server

o ProdRAC1/2 server running ‘SALES’ RAC database

o ProdRAC3/4 server running ‘INV’ RACOne database

• ACFS file systems: /acfs and /cloudfs

It is assumed that the user is running a 12.1 production database ‘SALES’ on ProdRAC1/2 cluster and

wants to create a clone of that database on a test & dev cluster for testing and certification purposes.

Therefore, the user needs to have two snapshots of the database for this purpose

Figure 19 – Test & Dev Management environment example

56 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

The following are the steps necessary to provision two snapshot databases for test and dev purposes:

Step 1

List the current cloned databases on the test cluster.

Step 2

Create a clone of RAC database ‘SALES’ on the test cluster and name it ‘SALESM’. Create the clone on

/acfs file system

Step 3

List the current cloned databases on the test cluster.

Step 4

Create a read-write snapshot of SALESM clone database called SALEST1 and configure it as a single

instance database. Also, create a read-write snapshot of SALEM clone database called SALEST2 and

configure it as a RAC database.

Step 3

List the current cloned databases on the test cluster.

[root@TestCluster1 ~]# gDBClone listdb

Database Name Database Type Database Role Location/Parent

------------- ------------- ---------------- ----------------

RACM RAC Master /cloudfs

[root@TestCluster1 ~]# gDBClone clone -sdbname SALES -sdbhost ProdRAC1 -tdbname

SALESM -dataacfs /acfs -racmod 2

[root@TestCluster1 ~]# gDBClone snap -sdbname SALESM -tdbname SALEST1

[root@TestCluster1 ~]# gDBClone snap -sdbname SALESM -tdbname SALEST2 -racmod 2

[root@TestCluster1 ~]# gDBClone listdb

Database Name Database Type Database Role Location/Parent

------------- ------------- ---------------- ----------------

SALESM RAC Master /acfs

RACM RAC Master /cloudfs

[root@TestCluster1 ~]# gDBClone listdb

Database Name Database Type Database Role Location/Parent

------------- ------------- ---------------- ---------------

RACM RAC Master /cloudfs

SALESM RAC Master /acfs

SALEST1 SINGLE Snapshot SALESM

SALEST2 RAC Snapshot SALESM

57 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Conclusion

Managing test and dev environments does not have to be complex. The Oracle Cloud File System

coupled with the gDBClone script provides powerful, flexible and simple tools that ease management of

test and dev servers and reduce management complexity.

You can finally contain the sprawling cost of storage by using the ACFS point-in-time snapshot

technology; and therefore, realize significant storage savings. Many sparse snapshot clones can be created

for parallel test and development purpose and only require a fraction of the storage. The Oracle Cloud

File System is bundled with Oracle Grid Infrastructure and installs automatically on every cluster.

Refreshing and recycling test databases have never been easier. The gDBClone script allows you to create

clones and snapshots, list and delete them in one simple command. This is the type of agility businesses

need to adapt to changing requirements in their IT organization.

58 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Appendix – A

Clone Location

Using the following options:

o -dataacfs Database datafiles target ACFS storage

o -redoacfs Database redologs target ACFS storage (default dataacfs)

o -recoacfs Database recovery target ACFS storage (default dataacfs)

 automatically gDBClone will create:

➢ an ACFS snapshot under "-dataacfs <acfs mount point>" called as tdbname and the database

dbfs will be stored in such place

➢ a folder called tdbname under "-redoacfs <acfs mount point>" and "-recoacfs <acfs mount

point>" if such options are provided

gDBClone clone -sdbname O12C -sdbscan slcac458-scan -tdbname CO12C -tdbhome OraDb12102_home1

 -dataacfs /u02/app/oracle/oradata/datastore

 -redoacfs /u01/app/oracle/oradata/datastore

 -recoacfs /u01/app/oracle/fast_recovery_area/datastore

-->

tree /u02/app/oracle/oradata/datastore/.ACFS/snaps/CO12C

/u02/app/oracle/oradata/datastore/.ACFS/snaps/CO12C

└── CO12C

 ├── datafile

 │ ├── o1_mf_sysaux_d0wd0jj3_.dbf

 │ ├── o1_mf_system_d0wd0j6g_.dbf

 │ ├── o1_mf_temp_d0wd2qt1_.tmp

 │ ├── o1_mf_undotbs1_d0wd0jmb_.dbf

 │ ├── o1_mf_undotbs2_d0wd0qt2_.dbf

 │ └── o1_mf_users_d0wd0r1r_.dbf

 └── spfileCO12C.ora

.

tree /u01/app/oracle/oradata/datastore/CO12C/

/u01/app/oracle/oradata/datastore/CO12C/

├── CO12C

│ ├── onlinelog

│ ├── o1_mf_1_d0wd2h1n_.log

│ ├── o1_mf_2_d0wd2m7t_.log

│ ├── o1_mf_3_d0wd26qo_.log

│ └── o1_mf_4_d0wd2boz_.log

└── control01.ctl

.

tree /u01/app/oracle/fast_recovery_area/datastore/CO12C/

/u01/app/oracle/fast_recovery_area/datastore/CO12C/

└── CO12C

 ├── archivelog

 │ └── 2016_10_24

 │ ├── o1_mf_1_4_d0wd13wv_.arc

 │ ├── o1_mf_1_5_d0wd148z_.arc

 │ ├── o1_mf_1_6_d0wd14jr_.arc

 │ ├── o1_mf_2_6_d0wd14sl_.arc

 │ └── o1_mf_2_7_d0wd153n_.arc

 └── backupset

 └── 2016_10_24

 └── o1_mf_nnsnf_TAG20161024T090133_d0wd2xow_.bkp

59 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Snap Location

When gDBClone snap is in use the database location is made based on the following assumptions:

 Database dbf will be stored following "db_create_file_dest" source database location.

Example having:

 db_create_file_dest='/u02/app/oracle/oradata/datastore/.ACFS/snaps/<sourceDBname>'

the snapshot database will store the dbf under

 /u02/app/oracle/oradata/datastore/.ACFS/snaps/<snapDBname>/<uppercase

snapDBname>/datafile

 Database Redologs will follow "db_create_online_log_dest_1"

Example having:

 db_create_online_log_dest_1='/u01/app/oracle/oradata/datastore/<sourceDBname>'

the snapshot database will store the dbf under

 /u01/app/oracle/oradata/datastore/<snapDBname>

 Database recovery area will follow "db_recovery_file_dest"

Example having:

 db_recovery_file_dest='/u01/app/oracle/fast_recovery_area/datastore/<sourceDBname>'

the snapshot database will store the dbf under

 /u01/app/oracle/fast_recovery_area/datastore/<snapDBname>

60 | GDBCLONE - A SIMPLE APPROACH TO MANAGING TEST AND DEVELOPMENT ENVIRONMENTS LEVERAGING ACFS SNAPSHOTS

Standby option

The standby option (usable doing clone/snap) is as following:

-pmode

If "-pmode" is used and ne maxperf LOG_ARCHIVE_DEST_2--> AFFIRM/ASYNC

If "-pmode" is not in use LOG_ARCHIVE_DEST_2--> NOAFFIRM/ASYNC

-activedg

Using "-activedg" the clone/snap database will be register as "-r physical_standby", "-s "READ

ONLY"

Without "-activedg" the clone/snap database will be register as "-r physical_standby", "-s

"mount"

-rtapply

If "-rtapply" is in use

--> "ALTER DATABASE RECOVER MANAGED STANDBY DATABASE

DISCONNECT USING CURRENT LOGFILE"

If "-rtapply" is not in use

--> "ALTER DATABASE RECOVER MANAGED STANDBY DATABASE

DISCONNECT FROM SESSION"

-standby [-pmode maxperf|maxavail|maxprot] [-activedg] [-rtapply]

Where

 -standby The clone/snap will be a physical standby database

 -pmode Standby option: maxperf/maxavail/maxprot (default maxperf)

 -activedg Enable Active Dataguard

 -rtapply Enable real time apply

Oracle Corporation, World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065, USA

Worldwide Inquiries

Phone: +1.650.506.7000

Fax: +1.650.506.7200

Copyright © 2014, Oracle and/or its affiliates. All rights reserved. This document is provided for information purposes only, and the
contents hereof are subject to change without notice. This document is not warranted to be error-free, nor subject to any other
warranties or conditions, whether expressed orally or implied in law, including implied warranties and conditions of merchantability or
fitness for a particular purpose. We specifically disclaim any liability with respect to this document, and no contractual obligations are
formed either directly or indirectly by this document. This document may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and
are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are
trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group. 0817

gDBClone - A Simple Approach to Managing Test and Development Environments Leveraging ACFS Snapshots
August 2017
Author: Ruggero Citton
Contributing Authors: Sanjay Singh, RACPack Team

C O N N E C T W I T H U S

blogs.oracle.com/oracle

facebook.com/oracle

twitter.com/oracle

oracle.com

